

Postharvest Quality Evaluation

Kietsuda Luengwilai

Dept. of Horticulture Kasetsart University at Kamphang Saen

agrkdl@ku.ac.th

Methods for determining quality of fresh commodities

- Visual
- Color
- Gloss
- Shape and Size
- Absence of defects
- Firmness
- Soluble solids content (SSC)
- Titratable acidity (TA)
- Phenolic compound
- Starch

Methods for determining quality of fresh commodities

- Visual
- Color
- Gloss
- Shape and Size
- Absence of defects
- Firmness
- Soluble solids content (SSC)
- Titratable acidity (TA)
- Phenolic compound
- Starch

Quality evaluation

- Subjective
 - Use eyes, hand feel, taste, noise to evaluate
- Objective
 - Based on measurement with number
 - Use an instrument to provide a specific value
 - Reliable

Color measurement

- Visual assessment
- Matching of colors

- Color charts or models

Optical instrumentation

Light reflected or transmitted by commodity

Chemical analysis for pigment content

Yxy color space

- The CIE system characterizes colors by a luminance parameter Y and two color coordinates x and y
- Y = luminous intensity
 - x = red light
 - y = green light
 - z = blue light

 That mixture may be specified by three numbers X,Y,Z called tristimulus values

Color chart (The Royal Horticultural Society)

#1 No. 1-56 :

YI, Or, Or/YI, Or, Or/R, R

#2 No. 57-110 :

Pr/R, Pr, Pr/Bl, Bl

#3 No. 111-154 :

G/BI, G, G/YI

#4 No. 155-202 :

Yl/Gray, Or/Gray, R/Gray, Pr/Gray, Gr/Gray, Br/Gray, Gray, Black and White

Difficulty of mixing the three lights to produce additional color

Red

+a*

L*, a*, b* color system

- Color can be used in many crops as in index of maturity or ripeness.
- Instruments to measure the peel color of fruits and vegetables are available from several manufactures.
- L* represents luminous intensity
- a* represents the red-green content
- b* represents the blue-yellow contebnt

Texture-feel in hands or mouth

- Firmness
 - Hardness, softness
- Crispness
- Succulence, juiciness
- Mealiness, grittiness
- Toughness, fibrousness

Texture measurement

- Firmness or softness
 - Puncture (various sized tips)
 - Magness-Taylor pressure tester; Effegi penetrometer
 - May be mouthed in a stand or automated
 - Compression of Deformation
 - FirmTech, Instron
 - Acoustic measurement (non-destructive)

Texture Measurement

- Fibrousness or toughness
 - Shear force
 - Resistance to cutting (Fibrometer)
 - Chemical analysis of fiber or lignin content
- Succulence and juiciness
 - Water content or extractable juice
- Sensory textural quality
 - Grittiness, crispness, mealiness, chewiness, oiliness

Nondestructive Firmness

Acoustic Firmness Measurement

- Aweta/Autoline on-line acoustic firmness sensor
 - "Gently" taps fruit and "listens" with a microphone.

....

- Uses Fourier analysis to determine the natural frequency of the fruit.
- Firmness = f² * m^{2/3}

Texture or firmness

- How texture/firmness change?
 - Transpiration
 - Starch breaks to glucose (banana, mango)
 - Cell membrane breakdown
 - Fiber synthesis

Sweetness

- Starch break down to glucose e.g. mango, banana
- Sugar accumulated during growth and development e.g. orange, grape, papaya

Sugars contents of different types of fruit

Fruits	Sugar contents (%)		
	Glucose	Fructose	Sucrose
Banana	5.8	3.8	6.6
Orange	2.4	2.4	4.7
Pineapple	2.3	1.4	7.9
Grape	8.1	8.0	0
Pomegranate	5.5	6.1	0
Tomato	1.6	1.2	0

Whiting, 1970

Relative Sweetness Index

Compound Rating

Sucrose Fructose Glucose Galactose Maltose Lactose

1.00 1.40-1.75 0.60-0.75 0.35 0.30-0.50 0.20

Soluble solids content

Sourness

- Organic acids accumulation
- Different fruits and development stages, different organic acids
- Determined by titrate with NaOH
- Can not use pH to determine sourness e.g. mangosteen

% <u>Titratable</u> acidity = (<u>ml NaOH</u>) (<u>N NaOH</u>) (<u>meq. wt. acid</u>) x 100 <u>ml</u> sample

ml NaOH = vol of NaOH N NaOH = normality of NaOH ml sample = vol of sample

meq.wt. citric acid	= 0.064
meq.wt. malic acid	= 0.067
meq. Wt. tartaric acid	= 0.075

Major organic acids in fruit and vegetables

Citric acid	Malic acid	Tartaric acid
citrus	tomato	grape
guava	potato	
pineapple	sweet potato	
pomegranate	leaf vegetable	Succinic acid
cucumber	banana	mango
carrot	peach	sala
okra	grape	
cabbage	bean	
onion		1 ANTA

Organic aids declines during ripening

- Respiration
- Reduce translocation from source tissue
- Sugar conversion
- Reduce the biosynthesis

Astringency

- Phenolic compound accumulation
- Found in some unripe fruits e.g. banana, persimmon
- Eliminated by high CO₂ treatment (or alcohol)
- Test by FeCl₃ solution

Astringency

• When 2-3 drops of iron (III) chloride solution is added to a dilute solution of phenol, a violet-blue coloration is produced.

Measurement of transpiration rate

A. Weight loss

B. Direct measurement

C. Diffusion porometer

