Postharvest Biology of Perishable Commodities

Jingtair Siriphanich Dept. of Horticulture Kasetsart University at Kamphangsaen agrits@ku.ac.th 081-2991522

Resources

- usda handbook 66
- · postharvest ucdavis

Comparative characteristic of crops Agronomic crops Horticultural crops Water content 10-20 % 70-95 % Respiration and transpiration low High Hard, durable Soft, perishable Small in size Large Stored for more than one year 2-3 days or longer Loss from fungi and insect Bacteria, fungi, insect, and senescence

POSTHARVEST BIOLOGY

- 1) TRANSPIRATION
- 2) RESPIRATION
- 3) ETHYLENE PRODUCTION
- 4) COMPOSITIONAL CHANGE
 CARBOHYDRATE, PROTEIN, FAT, PIGMENT

PHENOL, VITAMIN, VOLATILE, MINERAL

FACTORS INFLUENCING WATER LOSS INTERNAL FACTORS 1. SURFACE TO VOLUME RATIO

Sugar (soluble solids), titratable acidity and ascorbic acid in two type of mangosteen Mangosteen Soluble solids Acids Vit C (Brix) skin (%) (mg / 100 g) Normal 18.8 + 0.72 0.70 + 0.041.02 + 0.8Damage 20.2 + 0.870.78 + 0.030.39 + 0.14T-test ns **

PREVENTING WATER LOSS 1. HUMIDITY HIGHEST 2. TEMPERATURE LOWEST 3. AIR MOVEMENT LOWEST 4. PRESSURE NORMAL

Resp. RATE	mgCO2/kg.hr	COMMODITIES
VERY LOW	< 5	SEEDS
LOW	5-10	ROOT CROPS
WEDIUM	10-40	FRUITS
HIGH	40-100	VEGETABLES
VERY HIGH	>100	TROPICAL FRUITS

Relationship between temperature and respiration and shelf-life (approximation)

TEMP °C		RELATIVE VELOCITY	RELATIVE SHELF LIFE
0 }	2.0	1.0 unit	
10 1	2.0	2.0	
20	2.0	4.0	
30 (8.0	
40 }	2.0	16.0	

Relationship between temperature and respiration and shelf-life (approximation)

TEMP °C	ASSUMED Q ₁₀	RELATIVE VELOCITY	RELATIVE SHELF LIFE
0 }	2.0	1.0 unit	100 days
10	2.0	2.0	50
20	2.0	4.0	25
30 \		8.0	12.5
40	2.0	16.0	6.25

Relation between Temperature and shelf life

TEMP °C	ASSUMED Q ₁₀	RELATIVE VELOCITY OF DETERIORATION	RELATIVE SHELF LIFE
0	20	1.0 unit	100 days
10	3.0 2.5	3.0	33
20	2.0	7.5	13
30		15.0	7
40	1.5	22.0	4

2. ATMOSPHERIC COMPOSITION

REDUCING RESPIRATION

- · LOWER TEMPERATURE
- LOWER OXYGEN
- AVOID ETHYLENE
- · AVOID DAMAGE

III. ETHYLENE

- NATURAL HORMONE INDUCE RIPENING AND SENESCENCE
- ALL PLANT TISSUE CAN PRODUCE ETHYLENE
- PHYSIOLOGICALLY ACTIVE AT LOW Conc. (0.1 ppm)

SOURCE

- NATURE : PLANT, MICROBE, NATURAL GAS FIRE
- HUMAN: FACTORY, AUTOMOBILE, BALLAST, SMOKING, PLASTIC etc.

CLASSIFICATION	OF	HORTICULTURAL	COMMODITIES
ACCORDING TO THE	IR ET	HYLENE PRODUCTION	Name and the same

Class	ul C ₂ H ₄ /Kg.hr range at 20 C	Commodities
Very low	0.01-0.1	Citrus, grape, jujube, strawberry, pomegranate, leafy, vegetables, root vegetable, potatoes, cut flowers
Low	0.1-1.0	Cucumber, longan, lychee, longkong okra, peppers, pineapple, rambutan
Moderate	1.0-10.0	Banana, durian, melon, mango tomato
High	10.1-100.0	Apple, papaya, peach, pear, plum
Very high	>100.0	Mangosteen, sapodilla,

Effect of ethylene

Longkong

Ethylene Production

Fruit drop

WITH ANALOGS				
COMPOUND	PEA STEM INHIBITION	ABSCISSION		
CH ₂ =CH ₂ ethylene	1	1		
CH ₂ =CH=CH ₃ propylene	100	60		
C=0 carbon monoxide	2700	1250		
CH=CH (CaC ₂) acetylene	2800	1250		

ETHYLENE SYNTHESIS INHIBITORS - AVG (2-amino-4-aminoethoxy - trans-3-butenoic acid) - AOA (Aminooxyacetic acid) ETHYLENE ACTION INHIBITORS - Ag+ - NDB (Norbonadiene) - 1-MCP (1-methyl cyclopropene) - CO₂

AVOIDING EXPOSURE TO ETHYLENE

A. EXCLUSION OF ETHYLENE

- 1. USE OF ELECTRIC FORK-LIFTS
- 2. USE OF ETHYLENE-ABSORBER on fork lift
- 3. AVOIDING OTHER POLLUTION SOURCES
- 4. AVOIDING MIXING C_2H_4 -PRODUCING COMMODITIES WITH THOSE WHICH ARE SENTITIVE TO C_7H_4

B. REMOVAL OF ETHYLENE

- 1. ADEQUATE VENTILATION
- 2. USE OF ETHYLENE ABSORBERS POTASSIUM PERMANGANATE ACTIVATED CHARCOAL
- 3. USE OF OZONE OR UV TO OXIDIZE ETHYLENE
- 4. USE OF LOW PRESSURE SYSTEM

KMnO₄ with Banana

Extension of fruit vegetable and flower

- Lower temperature
- Increase humidity
- Lower O₂ increase CO₂
- Eliminate ethylene
- Keep clean
- Tender but sooner

Chemical composition changes

Carbohydrate

starch sugar cell wall

cellulose, pectin, hemicellulose Organic acid

Protein Lipid

> surface storage membrane

taste taste

texture taste overall

appearance taste appearance

Phenolics

polymerization taste, appearance

Pigment

chlorophyll, carotenoids, anthocyanin appearance

Vitamin

ascorbic acid nutrition

Volatile

aldehyde, alcohol, ester etc. aroma

Thank you