Climate Change Adaptation in Rural Social Ecological System

Rishiraj Dutta Space Application Section ICT and Disaster Risk Reduction Division United Nations Economic and Social Commission for Asia and the Pacific

Session Objectives

Upon completing this session, you should be able to:

- Explain the <u>interaction</u> between components of a socialecological system and CC
- Describe potential climate change impacts on the system
- Discuss various <u>adaptive</u> <u>measures</u> that can be taken at community adaptation in rural contexts

Definition - Social-Ecological System

A socio-ecological system can be defined as:

- A <u>coherent system</u> of biophysical and social factors that regularly interact in a resilient, sustained manner;
- A system that is <u>defined at several spatial, temporal, and</u> <u>organisational scales</u>, which may be hierarchically linked;
- A set of <u>critical resources</u> (natural, socioeconomic, and cultural) whose flow and use is regulated by a combination of ecological and social systems; and
- A perpetually <u>dynamic</u>, <u>complex</u> system with <u>continuous adaptation</u>.

- Social-ecological systems - linked systems of people and nature
- Humans are part of nature
- Delineation between social and ecological systems is artificial and arbitrary

Learning through a Case from Agriculture Sector

Livelihood Adaptation to Climate Change (LACC)

- Develop a <u>methodology</u> to transform climate change impact modelling into livelihood adaptation practices
- Strengthen <u>institutional structures</u> to handle climate change adaptation
- Initiate and facilitate the <u>field testing with</u> <u>farmers</u> of livelihood adaptation strategies

Eco-systems Considered

Drought Prone Areas

Key Strategy

Assessing Vulnerability

One can, actually, visualize the situation

High evaporation rate and temperature

High agricultural drought and dryness

Local Perceptions –1 On climate variability

- Current climate is <u>behaving differently</u> from the past years. The past climate condition was better (says the elderly people).
- Seasonal cycle (locally called *rhituchakra*) has changed from the past. Where it used to be 6 distinct seasons in the past but now its almost 3 or 4 seasons observed distinctly in a year.
- Climatic conditions have changed due to the <u>God's will</u> (*khodar ichay*) and the cure – the rainfall is in the <u>God's hand</u> (*akasher pani allar haatey*).
- The average temperature in the area has changed. People feel that <u>summer time heat increased</u> and the <u>winter has become shorter</u> and in some winter days <u>cold became severe</u>.

Local Perceptions –2 On drought situation

- People's perceptions on drought are equated to:
 - a) dryness (locally known as shukna),
 - **b)** consecutive non-rainy days (locally known as ana-bristi),
- Drought is <u>more frequent</u> now than before.
- Prevalence of <u>pest and disease incidence increased</u> and largely associated with HYV rice.
- With adoption of HYV rice the production increased but due to climatic variability adverse impact of drought causes <u>yield reduction</u>.
- Vegetable and fruits (Mango varieties) remain affected due to variations in rain, temperature and drought situations.

Risks and Vulnerabilities

Both types of factors: climatic & non-climatic factors emerged.

Climatic

Profiling of Livelihood Groups

'Non' or 'least' vulnerable groups Large Businessmen

Large Farmers

Assessing Future Climatic Risks

Making Synergy of What is Anticipated

Year	Mean Temperature Change (°C)			Mean Precipitation Change (%)			Sea Level Rise		
	Annual	DJF	JJA	Annual	DJF	JJA	IPCC (Upper range)	SMRC	NAPA
2030	1.0	1.1	0.8	5	-2	6	14	18	14
2050	1.4	1.6	1.1	6	-5	8	32	30	32
2100	2.4	2.7	1.9	10	-10	12	88	60	88

Note: DJF= December-January-February; JJA= June-July-August, SMRC= SAARC Meteorological Research Center (Source: Adopted from IPCC 2001, OECD Report 2003)

- Increasing <u>frequency</u>, <u>intensity</u> and <u>variability</u> of droughts, floods, tropical storms
- Sea level rise and salt water intrusion
- Agriculture will be the most affected sector

Future Climate Risk: Drought Spells

Analogy with Past Impacts

Agriculture/crops failure >> fallow land

Deterioration of water quality/fisheries Environmental degradation

Livestock loss

Testing and Designing Adaptation Options

Designing Adaptation Options

Made Use of Traditional Measures

Some farmers innovatively made use of the retained water

Agricultural Adaptations

 Agronomic management

Water harvesting and exploitation

• Water Use efficiency

- Crop intensification
 and diversification
- Alternate enterprises
- Post harvest practices

Field Demonstration of Prioritized Adaptation Options

Made Use of Alternative Responses

Livestock and birds

(that consume less water)

Home gardening Dual purpose (optimal use of water & plant)

Trying out Coastal Adaptation Options

Saline tolerant varieties

Minor structural adjustments

Cage fishing

More ducks than chicken

Strengthening Institutional Set-up

Capacity Building

Climate risk and impact analysis

- climate risk analysis methods
- climate change impacts
- viable adaptation options

act analysis nethods

Climate forecast applications trainings

- introduction to forecast products
- Application of weather and climate forecast products

Community Mobilizations

- Community awareness raising
- Farmers groups mobilization
- Planning, action and monitoring demonstrations on farmers fields
- Capacity building and training sessions
- Community Risk reduction planning

Gradual Systematic up-scaling of Livelihoods Adaptations

Some Lessons

- Development, DRR and CCA are integrated issues at the local level
- Moving towards adaptation requires a livelihoods perspective
- Institutional capacity building is key both at national and local levels
- We need comprehensive responses: "WHO does WHAT and HOW best ?"
- Value <u>indigenous/local knowledge</u>; we need to build on those, and integrate it with external "know how"
- Engagement strategy is crucial and the "adaptive learning" at all levels is essential.

