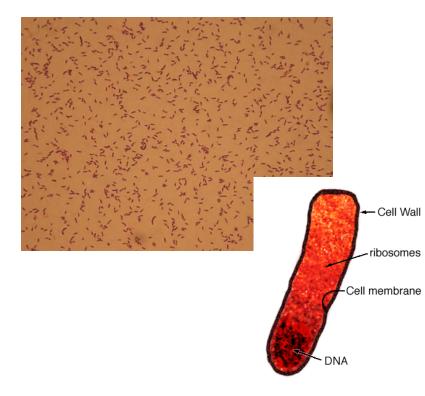
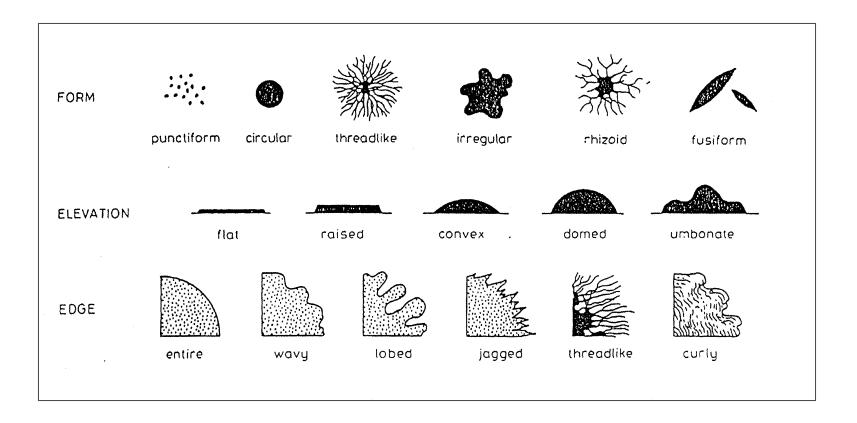
Plant Pathogenic Bacteria A Basic Guide to Identification

Fen Beed

Regional Director for East and Southeast Asia and Oceania



30th October, 36th IVTC Module 1


Prokaryotes

Three invariant characteristics

- Cell membrane
- Cytoplasmic 70S ribosome
- Non-membranebound nucleoid

Bacterial colony morphology

- Prokaryotes are ubiquitous and physiologically diverse
- Occupy a wide range of ecological niches, active
 as autotrophs, obtaining energy from inorganic sources or light
 - as saprophytes, obtaining energy from the breakdown of complex organic material
 - as symbionts, living co-operatively with other organisms

- as parasites, attacking and often killing other living things. The parasites are relatively few in both kinds and numbers.

Taxonomic ranks

- **Genus:** A discrete related group of species. Strains usually have >30% DNA homology
- Species: A discrete taxonomic unit; several well defined phenotypic differences from related species. Strains usually have >70% DNA homology
- **Subspecies:** One or two well defined phenotypic differences from other subspecies
- **Biovar:** One or two minor phenotypic differences from other biovars
- Pathovar: Pathological varieties. Have distinct host specificity range for a plant species or genus, or distinct symptoms on the same host
- Race: Specificity / virulence for some, but not all, cultivars of a plant species. Based on host resistance genes and avirulence genes in the pathogen

Plant Bacterial Pathogens

- All within the domain Bacteria
- Occur worldwide
- Exploit all environments and affect all major plant groups, but favour warm, moist environments
- Fall within 3 major groups
 - Gram negative
 - Gram positive
 - Non-culturables

The main plant pathogenic genera

Gram -ve

- Acidovorax
- Agrobacterium
- Brenneria
- Burkholderia
- Dickeya
- Enterobacter
- Erwinia
- Pantoea
- Pseudomonas

- Pectobacterium
- Pseudomonas
- Ralstonia
- Xanthomonas

The main plant pathogenic genera

Gram +ve

- Arthrobacter
- Bacillus
- Clavibacter
- Curtobacterium
- Leifsonia
- Nocardia
- Rathayibacter
- Rhodococcus
- Streptomyces

- Non-culturables [Candidatus]
 - Liberobacters
 - Phytoplasmas
 - Spiroplasma

Characterisation and identification of bacteria

Various methods exist

- Host range
- Phenotypic [biochemical] properties
- Protein profiles
- Fatty acid profiles
- DNA homology and sequence data
- DNA fingerprints

Methods, processes and end-points [2]

- Phytosanitary testing
 - Pre-described test procedure for known crop / pest combinations only
 - Limited need for wider inclusion of other pest knowledge; can be achieved by non-specialists
 - Require specific, dedicated infrastructure
 - Known outcome, with statistical confidence
 - Primarily driven by EU directives

Methods, processes and end-points [3]

Identification of unknowns

- Receiving of plant / pest combinations of any type
- Need to be inclusive of all pest types [entomological, mycological, bacterial, viral]
- Requires expert knowledge, infrastructure and access to reliable information resources

Methods, processes and end-points [4]

Research

- Responsive to demand
- Need to be inclusive of all pest types [entomological, mycological, bacterial, viral]
- Requires expert knowledge, infrastructure and access to reliable information resources
- Driven by national demand for providing broad services in plant health as supports commercial interests

Methods for bacterial identification

- Biochemical tests traditional methods
- Formatted biochemical tests
 - API strips
 - Biolog
- GC Fatty acid profiles MIDI system
- Serological immunological methods
- DNA methods
 - DNA homology
 - 16S rDNA
 - Fingerprinting

Biochemical tests

Dichotomous key – some key biochemical tests

Gram test [Gram –ve and +ve bacterium]

- Gram –ve
 - Anaerobic growth
 - Yellow colonies on YDC
 - Fluorescent pigment
 - Urease
 - Growth at 33C and 40C
 - Growth on D1M agar
 - Utilization of arginine and betaine

- Gram +ve
 - Endospores formed
 - Anaerobic growth
 - Ariel mycelium

Biochemical tests – example 1

- Pantoea stewartii
 - Non-motile
 - Negative for production of H₂S from cysteine, acetone, phenylalanine deaminase, nitrate reductase and gelatinase
 - Acid is produced from melibiose; non-acid from dulcitol, maltose, rhamnose or starch

Biochemical tests – example 2

- Ralstonia solanacearum
 - Non-fluorescent pseudomonas with polar tuft flagella
 - Cells non-pigmented, but brown diffusible pigment often produced
 - PHB is accumulated
 - Levan not formed from sucrose
 - Gelatin hydrolysis weak
 - Starch and aesculin not hydrolysed
 - Nitrate reduced by nearly all strains; many produce gas [denitrifying]
 - No growth at 40C
 - Oxidase positive
 - Arginine dihydrolase negative
 - Most strains produce tyrosinase
 - Light or no growth in broth containing 2% NaCl; no growth at 40C
 - Carbon sources used for growth: acetate, aconitate, L. alanine, D-alanine, γaminobutyrate, asparagine, L-aspartate, benzoate, butyrate, citrate, fumarate, gluconate, D-glucose, L-glutamate, glycerol, L-histidine, β-hydroxybutyrate, αketoglutarate, L-malate, mucate. L-proline, proionate, pyruvate, saccharate, succina sucrose and trehalose

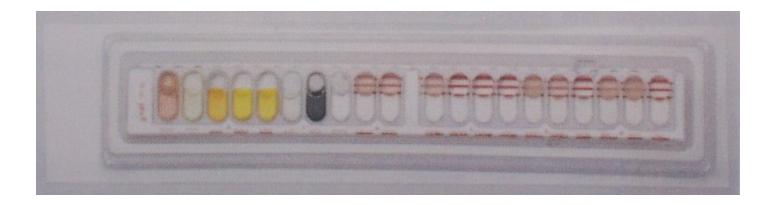
The LOPAT tests for fluorescent *Pseudomonads*

L	0	Ρ	А	Т	Group	Example
+	-	-	-	+	la	P. syringae
-	-	-	-	+	lb	P. savastanoi
-	-	+	-	+	II	P. viridiflava
-	+	-	-	+		P. cichorii
+	+	+	+	-	IVa	P. marginalis
-	+	+	+	-	IVb	P. fluorescens complex
-	+	-	+	-	Va	P. tolaasii
+	+	-	+	-	Vb	P. fluorescens complex

Levan production / oxidase reaction / Potato Rot / Arginine dihydrolose production / tobacco hypersensitivity – LOPAT – p26 Phytobacteriology book

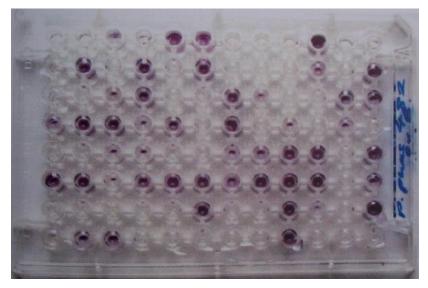
Biochemical tests

Advantages


- Is not requiring of expensive equipment and searchable data bases
- Limitations
 - Methods are many, some sequential and time consuming
 - Reagent list for tests is extensive and prepared media is to be aliquoted into many different formats
 - Many tests give variable strain specific results and some tests are unreliable
 - Technicians need to be very familiar with methods and competent in their use

Biochemical formatted platforms

- Takes the biochemical tests and places them on a more convenient format
- Two main commercial products
 - API strips [http://industry.biomerieux-usa.com/industry/food/api/index.htm]
 - Biolog [http://www.biolog.com/main.html]
- Results achieved within 48hrs
- Results [+ & -ve data] fed into library of described strains
- Similarity values on most likely identification
- Requires judgement over identifications presented



- Each well contains a different substrate
- Results are recorded as either a substrate colour change or as growth

The Biolog system

- The Biolog system presents an extended array of biochemical tests
- A positive result is seen as a purple colour change
- The plate can be read by eye or by a plate reader

Al	A2	A3 dextrin	A4	A5 tween 40	A6 tween 80	A7 N-acetyl-D-	A8 N-acetyl-D-	A9 adonitol	A10	A11 D-	A12 cellobiose
Water	a- cyclodextrin	dextrin	glycogen	tween 40	tween 80	galactosamine	glucosamine		arabinose	arabitol	
B1 i-erythritol	B2 D-fructose	B3 L-fucose	B4 D-galactose	B5 gentiobiose	B6 α-D-glucose	B7 m-inositol	B8 α-D-lactose	B9 lactulose	B10 maltose	B11 D-mannitol	B12 D-mannose
C1 D-melibiose	C2 β-methyl D-glucoside	C3 D-psicose	C4 D-raffinose	C5 L-rhamnose	C6 D-sorbitol	C7 sucrose	C8 D-trehalose	C9 turanose	C10 xylitol	C11 methyl pyruvate	C12 mono-methyl succinate
D1 acetic acid	D2 cis-aconitic acid	D3 citric acid	D4 formic acid	D5 D-galactonic acid lactone	D6 D- galacturonic acid	D7 D-gluconic acid	D8 D-glusaminic acid	D9 D-glucuronic acid	D10 a-hydroxy butyric acid	D11 β-hydroxy butyric acid	D12 γ-hydroxy butyric acid
E1 p-hydroxy phenylacetic acid	E2 itaconic acid	E3 a-keto butyric acid	E4 α-keto glutaric acid	E5 a-keto valeric acid	E6 D, L- lactic acid	E7 malonic acid	E8 propionic acid	E9 quinic acid	E10 D-saccharic acid	E11 sebacic acid	E12 succinic acid
F1 bromo succinic acid	F2 succinamic acid	F3 glucunoramide	F4 alaninamide	F5 D-alanine	F6 L-alanine	F7 L-alanyl -glycine	F8 L-asparagine	F9 L-aspartic acid	F10 L-glutamic acid	F11 glycyl L- aspartic acid	F12 glycyl L- glutamic acid
G1 L-histidine	G2 hydroxy L-proline	G3 L-leucine	G4 L-ornithine	G5 L- phenylalanine	G6 L-proline	G7 L-pyroglutamic acid	G8 D-serine	G9 L-serine	G10 L-threonine	G11 D, L-carnitine	G12 γ –amino butyric acid
H1 urocanic acid	H2 inosine	H3 uridine	H4 thymidine	H5 phenyl ethylamine	H6 putrescine	H7 2-amino ethanol	H8 2,3- butanediol	H9 glycerol	H10 D, L- α- glycerol phosphate	H11 glucose-1- phosphate	H12 glucose- 6-phosphate

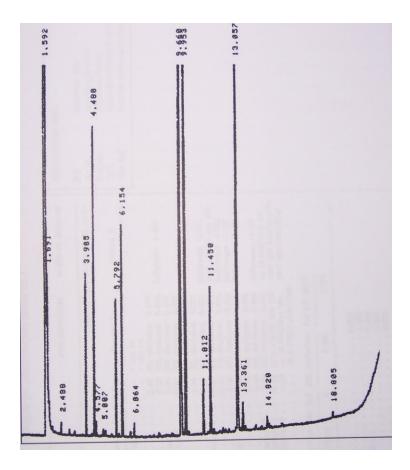
Biochemical formatted platforms [Biolog]

Advantages

- Is not requiring of expensive equipment
- System is quick, reproducible and easy to perform
- Data can be shared between laboratories
- Can provide a reasonable identification to the genus and species level
- Limitations
 - Requires investment [access] to the library
 - Has limitation in resolving below species level [pathovar separation]
 - Library stronger on human microbials than plant pathogenic bacteria

Fatty acid analysis – the Midi system

Fatty acids


Gram-negatives

- Unique hydroxy patterns
- Some cyclopropanes
- Few branched acids
- Gram positives
 - Many branched acids
 - Very few hydroxy and cyclopropane acids.

Fatty acid extraction process

- Culture Cells [i.e. 24hr on TSBA]
- Harvest Cells
- Saponify Lipids
- Methylate Fatty Acids [FAMEs]
- Extract and Purify
- GC analysis
- Comparison to library

MIDI system print outs

ID: Bottle:	2032 41	NM-P.	PHAS. 95	.1 58A40]				Date of m	un: 16-SEP-00 08:35:27
RT	Area		Respon	ECI,	Nane		*	Cossent 1	Conment 2
2.497 3.995 4.490 4.587 5.015 5.803 6.164 6.872 9.670 9.963 11.021 11.460 13.066 13.372 14.830	309664512 6556 10872 23184 1112 600 11480 13088 1216 165296 141496 6136 16376 94856 3184	0.035 0.034 0.037 0.038 0.039 0.038 0.046 0.046 0.049 0.049 0.049 0.050 0.050	1.053 1.031 1.028 1.015 0.989 0.978 0.954 0.953 0.948 0.946 0.946 0.946 0.946 0.945		SOLVENT PEAK		2.41 5.03 0.24 0.13 2.40 3.76 0.25 33.17 28.35 1.22 3.26 18.87 0.63 18.87 0.28 33.17 0.28	<pre>c min rt c min rt c min rt c min rt cL deviates 0.000 ECL deviates 0.001 ECL deviates 0.002 ECL deviate</pre>	Reference 0.001 Reference 0.001 16:1 *7c/15 iso 20H 20H Reference 0.002 Reference 0.001 Reference 0.001 Reference 0.001 Inference 0.001 Inference
Solvent	Ar Total	Area	Named Ar	ee % Nat	med Total Annt	Nbr Re	ef BCL	Deviation Ref ECL S	hift
309664	512 4	00000	1052	60 100	475532		6	0 100.0	.001
309664	DITRIC	TRave 1	0] * NO 10] Pseu P.	MATCH * domonas syringa P. s. ph	e aseolicola ycinea	· · · ·	· · · · · · · · · · · · · · · · · · ·		

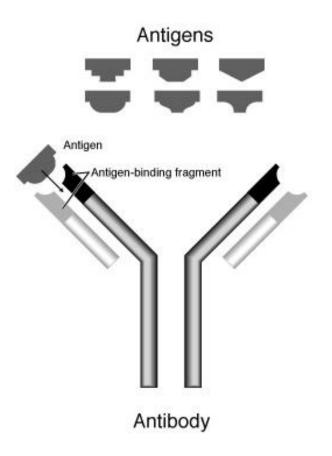
- GC trace [left]
- Library analysis [above]

Key acids from 4 genera

Acid	Acidovorax	Ralstonia	Pseudomonas	Burkholderia
10:0 3OH	+		+	+
12:0 2OH			+	
12:0 3OH			+	
14:0 3OH		+	+	+
16:0 2OH		+		+
16:0 3OH			+	+
16:1 2OH		+		
18:1 2OH		+		+

Fatty acid analysis

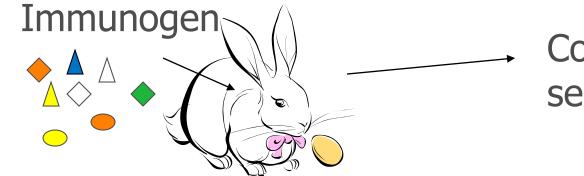
Advantages


- System is quick, reproducible and easy to perform
- Data can be shared between laboratories
- Can provide a reasonable identification to the genus and species level
- Limitations
 - Requires investment in GC equipment and MIDI library
 - Has limitation in resolving below species level [pathovar separation]
 - Library stronger on human microbials than plant pathogenic bacteria

Serological approaches

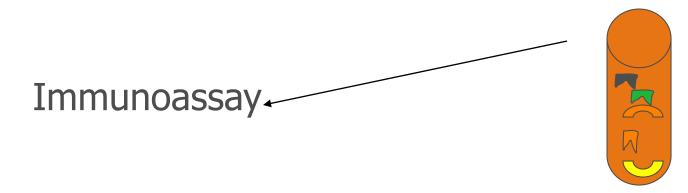
Serological approaches

- Rapid
- Sensitive
- Specific
- Diagnose diseases


Immunoassays are based on antibodies....

- Mammals produce antibodies that specifically recognize binding sites (epitopes) on proteins, glycoproteins, lipopolysaccharides, carbohydrates (antigens)
 - Polyclonal antibodies
 - Monoclonal antibodies
- Antibodies specifically bind antigens
- Bound antibodies are detected with various markers

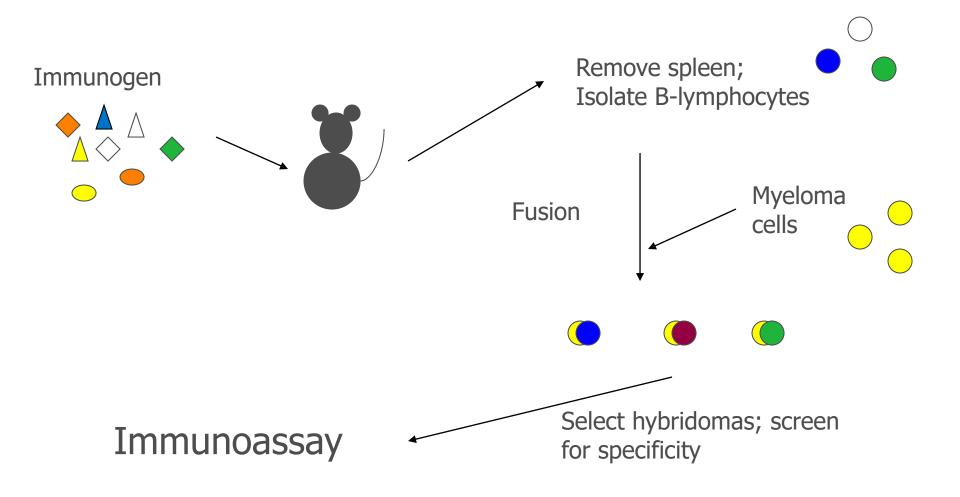
Polyclonal Antibodies


- Immunogens (preparations containing antigens that are used to immunize an animal)
 - Various degrees of purification of immunogens
 - Whole cells
 - Cell (surface) washings
 - Virus particles
 - Broken cells
 - Purified cell components
- Immunogens injected into animals for antibody production

Polyclonal antibody production

Collect blood; separate serum

Purify antiserum

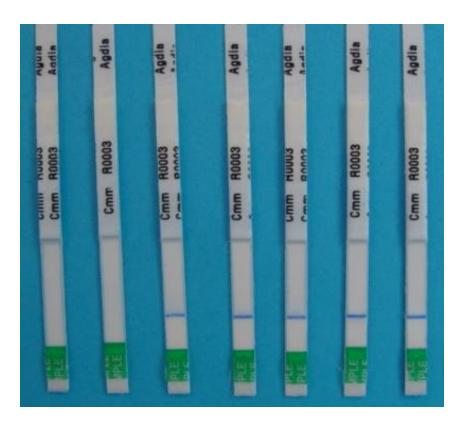

Characteristics of polyclonal antisera

- High sensitivity
- Varying specificity depending on purity of immunogen/number of epitopes
- May vary from batch to batch

Monoclonal antibodies

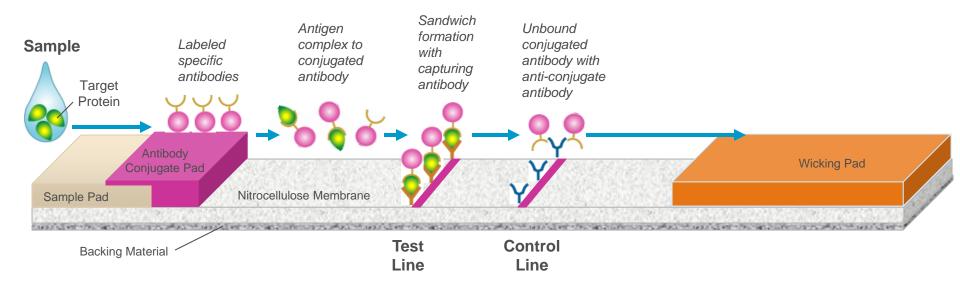
- Single type of antibody
- Highly specific
 - Recognize single epitope
- Sensitivity varies
- Produced by hybridoma cell lines that are theoretically immortal

Monoclonal antibody production

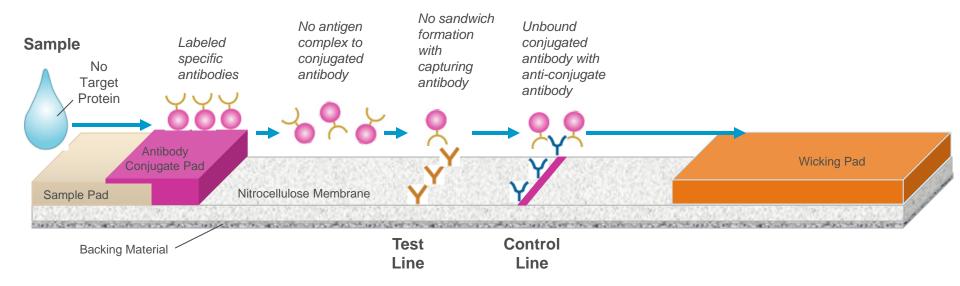

Immunoassay formats

- Enzyme-linked immunosorbent assay (ELISA)
 - Enzyme conjugated to antibody = marker
 - Alkaline phosphatase
 - Peroxidase
- Lateral flow immunoassay
 - Ab-Ag binding occurs as mixture flows through solid phase in liquid
- Immunofluorescence
 - Fluorescent molecule marks Ab-Ag reaction

ELISA


- Positive reaction indicated by enzymatic reaction with chromogenic substrate = color change
 - Antigen capture/plate-trapped antigen
 - Antigen bound to solid phase
 - Indirect vs. direct
 - Direct = detecting antibody conjugated with enzyme
 - Indirect = enzyme conjugated to secondary antibody
 - Sandwich ELISA (double antibody, triple antibody)

Immunostrip (Lateral Flow) Assays


- Very fast 3-5 minutes
- Sensitive
- Some are available commercially
- Extracts diffuse through paper strips
- Marker may be gold microparticles

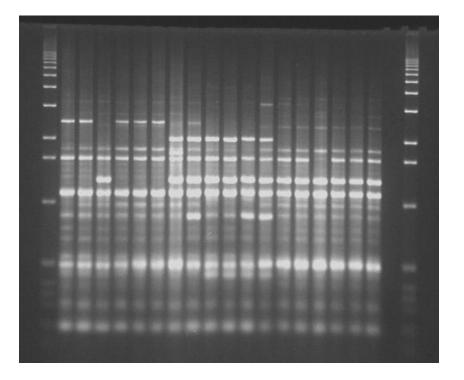
LFD Cross-Sectional View Positive Result

Environlogix, Inc.

LFD Cross-Sectional View Negative Result

DNA approaches

DNA sequencing


16s rDNA sequencing

- One example: 27F and 1492R primers amplification followed by 518F and 800R primers
- Stringent annealing conditions
- BLAST search for nearest relatives
- Assemblage of closest relatives

Sequencing of other genes

- Whilst 16S rDNA is the normal target for sequencing, for some bacteria insufficient variation may be present to allow differentiation below the species level [pathovar level]
- For these bacteria different target sequences can be used which present more variation
 - Examples include:
 - Hrp genes
 - Gyrase gene
 - 16-23S rDNA interspacer region

DNA fingerprinting

- By comparing DNA fingerprint of unknown to known strains an identification can be achieved
- Is particularly appropriate for pathovar level identifications
- Require access to known strains [genetic resource collection]

DNA approaches to identification

Advantages

- Commercial services available for sequencing
- Data can be shared between laboratories
- By a combination of approaches identification to the genus, species and pathovar level can be achieved
- Limitations
 - Requires investment in PCR and gel equipment
 - Cost of molecular consumables is high
 - Technically demanding; PCR is notorious for 'random' problems