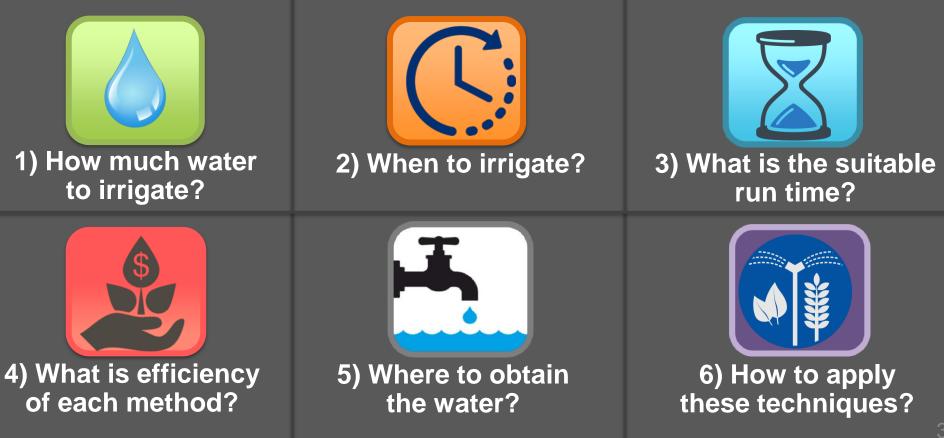

Irrigation for vegetable production

Dr. Songsak PUTTRAWUTICHAI

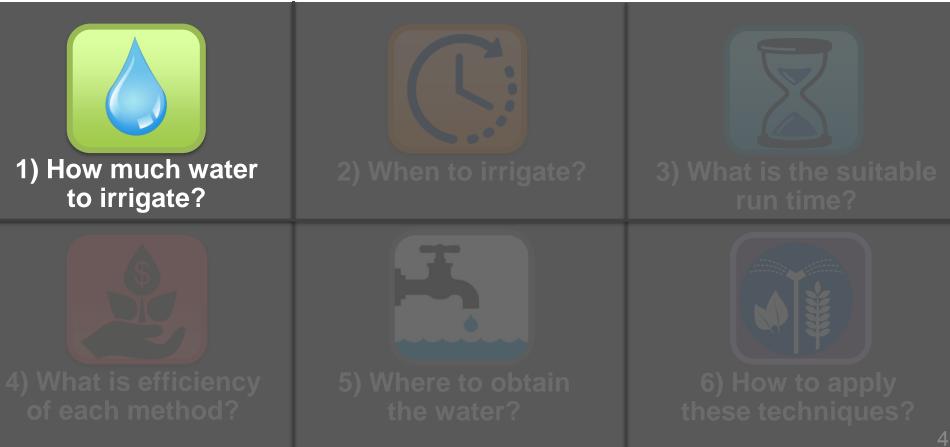
Department of Irrigation Engineering Faculty of Engineering at Kamphaeng-saen Kasetsart University

> +66 34281101 fengsspu@ku.ac.th



Songsak PUTTRAWUTICHAI

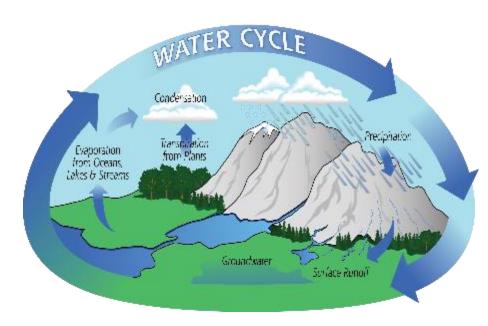
D.Eng. (Irrigation Engineering), Kasetsart University M.Eng. (Irrigation Engineering), Kasetsart University B.Eng. (Irrigation Engineering), Kasetsart University


Class objectives

Irrigation techniques will answer the following:

Class objectives

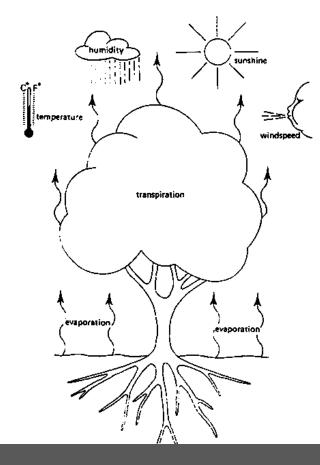
Irrigation techniques will answer the following:



Water requirement VS. Water supply

How much water to irrigate?

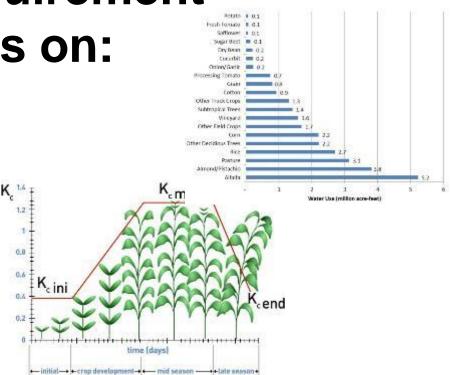
• What is vegetable water requirement?


It is the rate of evapotranspiration (\mathbf{ET}_{veg}) necessary to sustain optimal growth vegetable crop (mm/day)

The crop water requirement

The crop water need (ET crop) is defined as the depth (or amount) of water needed to meet the water loss through evapotranspiration

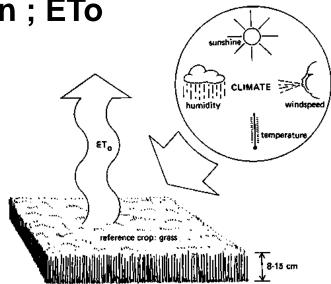
(Food and Agriculture Organization of the United Nations)



The crop water requirement mainly depends on:

- Climate
- Crop type
- Growth stage of the

Climatic	Crop water need							
Factor	High	Low						
Temperature	hot	cool						
Humidity	low (dry)	high (humid)						
Windspeed	windy	little wind						
Sunshine	sunny (no clouds)	cloudy (no sun)						

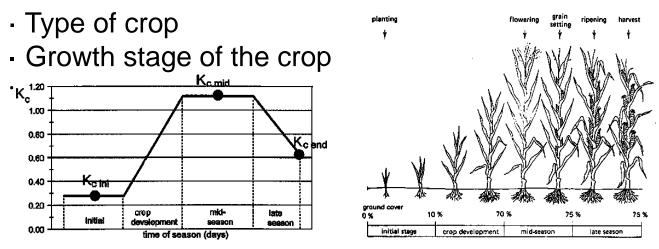


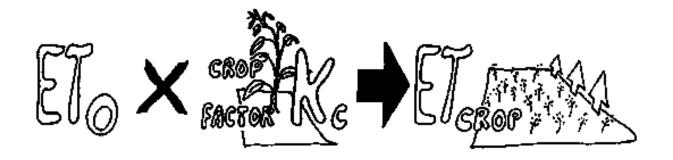
The reference crop evapotranspiration ; ETo

The **reference crop evapotranspiration** (ETo) expresses influence of climate.

The ETo is usually expressed by depth/time

Grass has been taken as the reference crop.

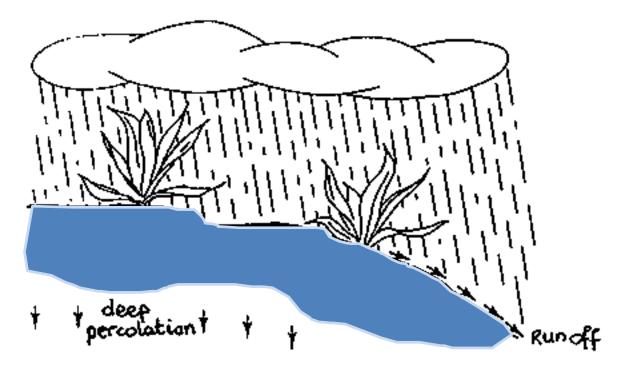



Crop coefficient; Kc

Crop coefficient; Kc is expressed the influence of the crop type and growth stage on crop water requirement

The crop coefficient, Kc, mainly depends on:

Crop Water Requirement; ETcrop



ETcrop is crop water requirement (mm)

- KC is crop coefficient
- ETo is reference evapotranspiration (mm)

Effective rainfall

Meaning: Effective rainfall (Pe) is the amount of precipitation that is actually added and stored in the soil, which is useful for the plants.

Amount of effective rainfall

If: Rainfall < Water requirement Effective rainfall = All of rainfall

If: Rainfall > Water requirement Effective rainfall = Amount of water which is stored in the soil \rightarrow To calculate

If: Rainfall >> Water requirement Effective rainfall = Water requirement

Estimation of effective rainfall for paddy

Avg. monthly rainfall	Effective rainfall (Ep)						
(mm)	(mm)	%					
200	200	100					
250	237.5	95					
300	270	90					
350	292.5	83.6					
400	310	77.5					
450	320	77.1					
500	325	65					

Estimation of Effective rainfall perennial crop

 $Ep = 2.54f (0.329R^{0.824} - 0.116) \times 10^{0.009ET_{crop}}$

Where: Ep = Effective rainfall in centimeter

- $f = (0.532 + 0.116D + 0.009D^2 + 0.002D^3)$
- D = Amount of humidity in root zone before irrigation
- R = Avg. Monthly rainfall in centimeter

ETcrop = Crop water requirement in centimeter

Estimation of Effective rainfall for Upland crop

Avg. rainfall	Crop water requirement (ETcrop) ; mm											
(mm)	25	50	75	100	125	150	175	200	225	250		
15	9	10	10	11	11	12	12	13	14	15		
20	12	13	14	14	15	16	17	18	19	20		
30	18	19	21	22	22	23	24	25	28	30		
40	23	25	27	29	30	31	32	35	38	40		
50	<u>25</u>	32	34	35	35	38	40	43	46	49		
60		38	40	42	43	45	47	51	55	59		
70		43	46	49	51	53	55	59	63	68		
80		48	52	55	58	60	63	67	71	77		
90		<u>50</u>	57	61	64	67	70	75	79	85		
100			63	67	71	74	78	82	87	94		
110			68	73	78	80	84	89	95	102		
120			73	78	84	85	91	97	102	110		
130			<u>75</u>	83	89	92	98	104	110	118		
140				89	95	99	105	112	118	126		
150				94	101	105	110	120	125	134		
160				99	106	110	117	125	132	142		
170				<u>100</u>	111	116	123	131	138	149		
180					116	121	129	136	144	155		
190					121	126	134	142	150	161		
200					<u>125</u>	132	140	148	157	168		
Capacity of humidity storage in soil (mm)	20	30	40	50	60	75	100	125	150	175		
Factor	0.74	0.82	0.88	0.93	0.96	1	1.02	1.04	1.06	1.07		

Irrigation water requirement

<u>Step 1</u>: To determine the reference crop evapotranspiration: ETo

<u>Step 2</u>: To determine the crop factors: Kc

<u>Step 3</u>: To calculate the crop water need: $ETcrop = ETo \times Kc$

Step 4: To determine the effective rainfall: Pe

<u>Step 5</u>: To calculate the irrigation water requirement = ETcrop - Pe

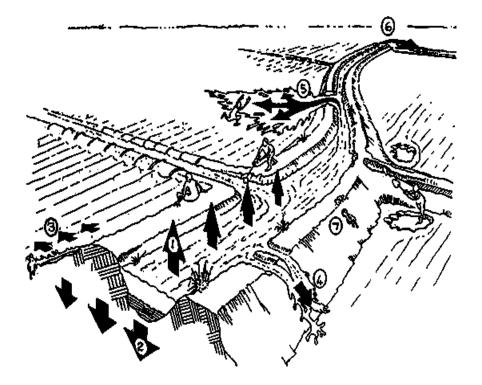
Irrigation water requirement in irrigation area

Net Irrigation Water Requirement (NIWR) :

the quantity of water necessary for crop growth for the whole planting area $\underset{NIWR = }{\overset{n}{\sum_{i=l}^{n} CWR_i \cdot S_i}{S}}$

where S_i is the area cultivated with the crop i in ha.

Gross Irrigation Water Requirement (GIWR) : the amount of water to be extracted and applied to the


irrigation scheme (includes losses). $GIWR = \frac{1}{E} \cdot MWR$ where E is the efficiency of the irrigation system.

Irrigation losses

Examples:

- 1. Evaporation
- 2. Deep percolation
- 3. Seepage
- 4. Overtopping
- 5. Bund breaks
- 6. Runoff in the drain

7. Rat holes in the canal bunds

How much water to irrigate?

How to determine vegetable water requirement?
 By using class A pan,

$$\mathbf{ET_{crop}} = \mathbf{K_p} \times \mathbf{E_{pan}} \quad Eq. \ 1$$

where $K_p =$ Pan crop coefficient, **Table 1** $E_{pan} =$ Evaporation rate (mm/day), **Table 2**

How much water to irrigate?

Table 1 | Pan crop coefficients from Class-A Pan

Vegetable	Kp as Growth rate perentage										
	0	10	20	30	40	50	60	70	80	90	100
Long root depth	0.20	0.20	0.25	0.35	0.50	0.65	0.70	0.60	0.45	0.35	0.20
Shallow root depth	0.10	0.20	0.40	0.50	0.60	0.60	0.60	0.55	0.45	0.35	0.3

Table 2 | Evaporation Rate (mm/day)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Ep.	3.3	4.5	6.4	8.0	6.5	6.3	5.0	6.0	4.5	4.8	5.0	5.0

Example:

Determine water requirement of Chinese morning glory given it is planted in March with a growth rate of 20 days to harvest.

The calculated water requirement of morning glory water is shown in **Table 3.**

Example:

Table 3. Water requirement for Chinese morning glory

Growth day	0	2	4	6	8	10	12	14	16	18	20
% Growth	0	10	20	30	40	50	60	70	80	90	100
Кр	0.20	0.20	0.25	0.35	0.50	0.65	0.70	0.60	0.45	0.35	0.20
Ep (mm/day)	6.40	6.40	6.40	6.40	6.40	6.40	6.40	6.40	6.40	6.40	6.40
Etcrop (mm/day)	1.28	1.28	1.60	2.24	3.20	4.16	4.48	3.84	2.88	2.24	1.28

How much water to irrigate?

• How to determine Irrigation Water Requirement (IWR)?

Eq. 2

Each irrigation method has varied efficiency:

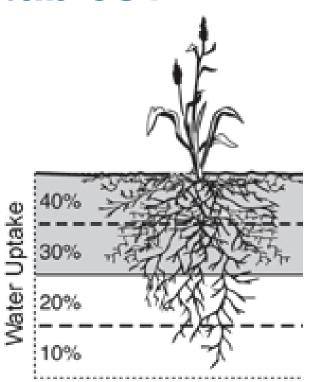
- Surface 50-70%
- Sprinkler 70-80%
- Micro-Irrigation 80-95%

Example: IWR for each irrigation method

Table 4. Irrigation Water Requirement

Growth day	0	2	4	6	8	10	12	14	16	18	20
% Growth	0	10	20	30	40	50	60	70	80	90	100
Кр	0.20	0.20	0.25	0.35	0.50	0.65	0.70	0.60	0.45	0.35	0.20
Ep (mm/day)	6.40	6.40	6.40	6.40	6.40	6.40	6.40	6.40	6.40	6.40	6.40
Etcrop (mm/day)	1.28	1.28	1.60	2.24	3.20	4.16	4.48	3.84	2.88	2.24	1.28
IWR (mm/day)											
- Surface 55%	2.33	2.33	2.91	4.07	5.82	7.56	8.15	6.98	5.24	4.07	2.33
- Sprinkler 75%	1.71	1.71	2.13	2.99	4.27	5.55	5.97	5.12	3.84	2.99	1.71
- Micro 80%	1.60	1.60	2.00	2.80	4.00	5.20	5.60	4.80	3.60	2.80	1.60

Class objectives


Irrigation techniques will answer the following:

When to irrigate your vegetables?

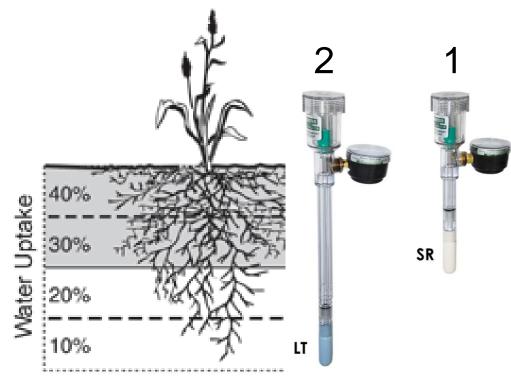
A commonly-used indicator for when to irrigate is the moisture depletion in soil

As a vegetable grows, it uses up the water with in the soil profile of its root zone

When to irrigate your vegetables?

Practically, the moisture of soil is related to the matric potential.

For high yield crop production, the matric potential is 30 centibars and thus can be measured by tensiometer

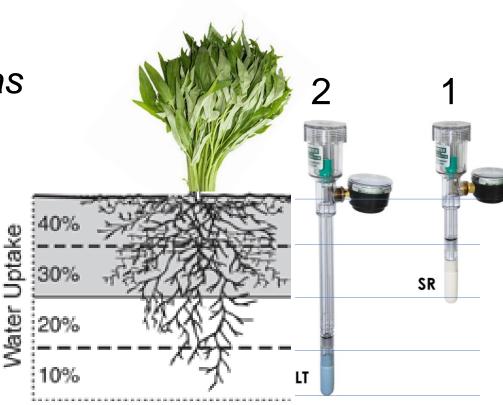


Determine irrigation interval

Two tensiometers must be installed:

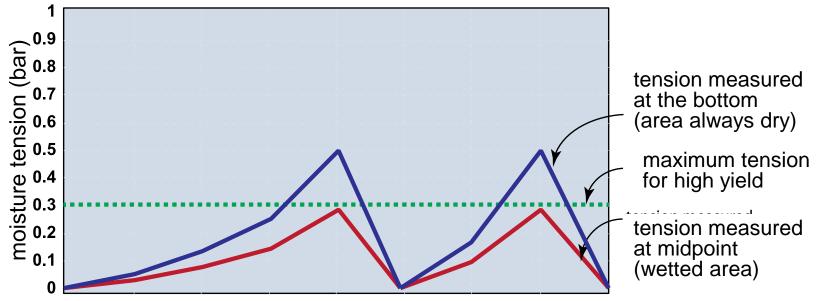
1) at midpoints of the main root depth where irrigation is always wet

2) at the bottom of the root depth

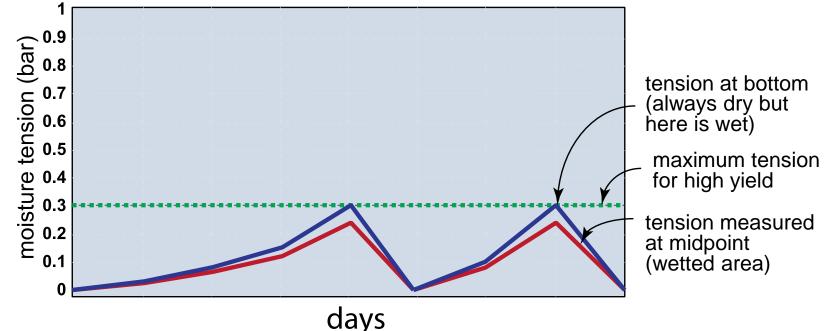


Example

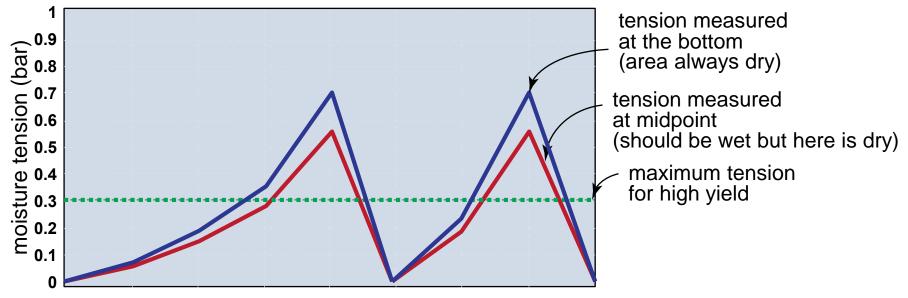
Chinese morning glory has an appropriate moisture tension of 30 centibars


- 1) at 0.15 m depth
- 2) at 0.30 m depth

Example of data from tensiometer


Case 1: Proper irrigation

days


Example of data from tensiometer Case 2: Over irrigation

Example of data from tensiometer

Case 3: Under irrigation

days

Class objectives

Irrigation techniques will answer the following:

What is the appropriate run time?

Run time:

the time duration between the start and the stop of a valve.

Knowing an accurate run time will save cost, labor and energy.

What is the appropriate run time ?

For sprinkler,

Application rate = precipitate rate (mm/hr)/area of coverage

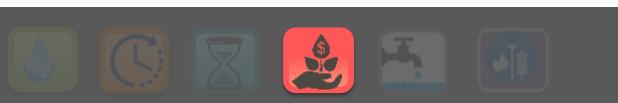
For micro-irrigation,

Application rate = number of emitters in the area x rate of emitter

Class objectives

Irrigation techniques will answer the following:

What is the efficiency (E_a)?


Surface IrrigationSprinkler IrrigationM $(E_a = 50-70\%)$ $(E_a = 70-80\%)$ (

Micro-Irrigation (E_a = 80-95%)

Surface Irrigation
$$(E_a = 50-70\%)$$
Sprinkler Irrigation
 $(E_a = 70-80\%)$ Micro-Irrigation
 $(E_a = 80-95\%)$

 $(E_a = 80-95\%)$

- Most commonly-used method
- Water is applied and distributed over the soil surface by gravity
- Examples of surface irrigation
 - Basin irrigation
 - Border irrigation
 - Furrow irrigation

Basin Irrigation

- Most commonly used surface irrigation in small fields
- Undirected flow of water is provided onto the field and prevented from runoff by an encompassing dyke

Example of Basin Irrigation

Surface Irrigation Basin Irrigation

 Suitable crops for basin irrigation are those able to stand in wet conditions for >24 hr

Rice in the field irrigated by basin method

Surface Irrigation Basin Irrigation

On flat land, only minimal leveling is required to obtain basin levels

Loamy soils are preferred to avoid waterlogging

Note that course sands are not recommended due to a high percolation loss

Loamy soil for basin irrigation

Design for Basin Irrigation

Area in hectares

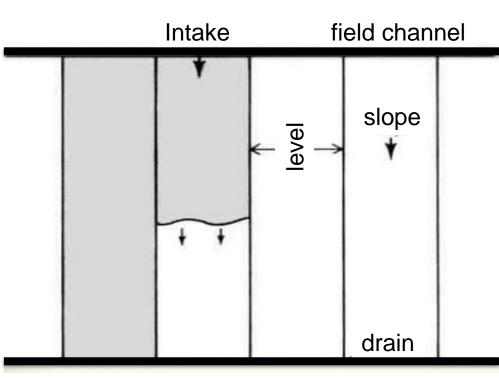
۸

Table 5Suggested basin areas for different soil types and rates of water flow. (Taken from
Booher, 1974.)

			Soil t	type				
Flo	w rate	Sand	Sandy loam	Clay loam	Clay			
Liters per second	Cubic meters per hour		Hectares					
30	108	0.02	Ú.06	0.12	0.2			
60	216	0.04	0.12	0.24	0.4			
90	324	- 0.06	0.18	0.36	0.6			
120	432	0.08	0.24	0.48	0.8			
150	540	0.10	0.30	0.60	1.0			
180	648	0.12	0.36	0.72	1.2			
210	756	0.14	0.42	0.84	1.4			
240	864	0.16	0.48	0.96	1.6			
270	972	0.18	0.54	1.08	1.8			
300	1080	0.20	0.60	1.20	2.0			

Surface Irrigation Border Irrigation

• Extended basin irrigation with sloping, long rectangular or contoured field shapes and free draining conditions at the lower end.



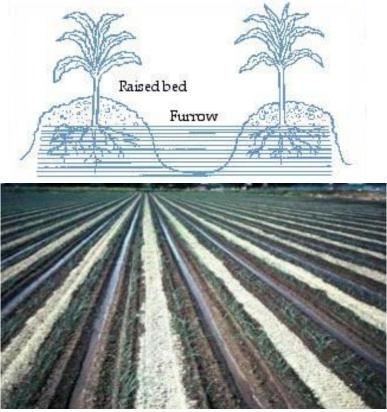
Example of Border Irrigation

Border Irrigation

- In a typical border irrigation, a field is divided into sloping borders.
- Water is applied to each border from the field head ditch from the upper to the lower end.

Design of Border Irrigation

Table 6A


Suggested standarcs for the design of border-strips for shallow-rooted crops. (Taken from Booher, 1974.)

	Percent	Unit flow per meter of strip	Average depth of water	Border-strip		
Soil profile	of slope	width	applied	Width	Length	
	Meters per 100 meters	Liters per second	Milli- meters	Meters		
CLAY LOAM	C.15-0.6	6-8	50-100	5-18	90180	
0.6 meter deep over permeable	0.6 -1.5	4-6	50-100	5-6	99-180	
subsoil	1.5 -4.0	-2-4	50-100	56	90	
CLAY	(15-0.6	3-4	100-150	5-18	180-300	
0.6 meter deep over permeable	(6 -1.5	2-3	100-150	5-6	180-300	
subsoil	1.5 -4.0	1-2	100-150	5-6	180	
LOAM	1.0 -4.0	1-4	25-75	5-6	90–30 0	
0.15 to 0.45 meter deep over hardpan						

Furrow Irrigation

 Flow is channeled along the primary direction of the field using furrows

Example of Furrow Irrigation

Design for Furrow Irrigation

Table 6B Suggested maximum lengths of cultivated furrows for different soils, slopes, and depths of water to be applied. (Taken from Booher, 1974.)

A. Lengths in meters; depths in centimeters

	Average depth of water applied (centimeters)											
Furrow slope	7.5	15	22.5	30	5	10	15	20	5	7.5	10	12.5
	Clays				Loams				Sands			
Percent						Me	ters					
0.05	300	400	400	400	120	270	400	400	60	90	150	190
0.1	340	440	470	500	180	340	440	470	90	120	190	220
0.2	370	470	530	620	220	370	470	530	120	190	250	300
0.3	400	500	620	800	280	400	500	600	150	220	280	400
0.5	400	500	560	750	280	370	470	530	120	190	250	300
1.0	280	400	500	600	250	300	370	470	90	150	220	250
1.5	250	340	430	500	220	280	340	400	80	120	190	220
2.0	220	270	340	400	180	250	300	340	60	90	150	190

Surface Irrigation (E_a = 50-70%)

Sprinkler Irrigation (E_a = 70-80%)

Micro-Irrigation (E_a = 80-95%)

Sprinkler Irrigation

- Similar to natural rainfall
- Water distributed through the pipes is sprayed into the air through sprinklers

Examples of Sprinkler Irrigation

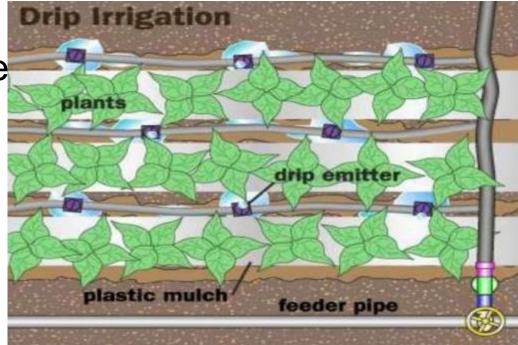
Sprinkler Irrigation

NAAN 344/90 MAJOR SIZE General Purpose Sprinkler. With two nozzles, larger discharges and precipitations. Spoon hammer drive, thrust spring and protector sleeve, stainless steel axle. Weight: 770 g NAAN 344/92 MAJOR SIZE General Purpose Sprinkler. Brass hammer, wedge drive, thrust spring and protector sleeve, stainless steel axle. Weight: 730 g

Nozzle Size In mm, CODE		a in atm.	e in m ¹ /h	Diameter Coverage in m.	Precipitation in mm/h for Covered Area Spacing in metres						
		Pressure in	Discharge in		2 × 12	2 x 15	12 x 18	8 x 18	8 x 24	24 × 24	
344/90	344/92	1.02		1.0245	-			. Pr.	-	64	
4.8 x 4.8 PERSIL	4.8 x 4.8 PAGOD	3.0 3.5 4.0 4.5 5.0	2.86 3.08 3.29 3.48 3.64	29 30 31 32 32	19.9 21.4 22.8 24.2 25.3	16.9 17.1 18.3 19.4 20.2	13.2 14.3 16.2 16.1 16.9	4			
5.5 x 4.8 PERLOD	5.5 x 4.8 PATIN	3.0 3.5 4.0 4.5 5.0	3.30 3.59 3.84 4.04 4.25	32 33 34 35 35	22.9 24.9 26.7 28.0 29.5	18.4 20.0 21.4 22.5 23.6	15.3 16.5 17.8 18.7 19.7	10.2 11.1 11.9 12.5 13.1			
6.3 x 4.8 PERGIN	6.3 x 4.8 Parac	30 3.5 4.0 4.5 5.0 5.5	3.85 4.16 4.47 4.71 4.94 5.18	34 35 36 37 37 38	26.7 28.9 31.0 32.7 34.3 36.0	21.4 23.1 24.9 26.2 27.5 28.8	17.8 19.3 20.7 21.8 22.9 24.0	11.9 12.9 13.8 14.6 15.3 16.0	8.9 9.6 10.3 10.9 11.4 12.0	8.2 8.6 9.0	
7.5 x 5.5 PERTAT	7.5 x 5.5 PALOF	3.0 3.5 4.0 4.5 5.0 5.5	5.28 5.68 6.05 6.38 6.74 7.06	36 37 39 40 41 41			24.5 26.3 28.0 29.5 31.2 32.7	16.3 17.6 18.7 19.7 20.8 21.8	12.2 13.1 14.0 14.7 15.6 16.3	9.2 9.9 10.5 11.1 11.7 12.3	
8.5 x 5.5 PERNES	8.5 x 5.5 PAKID	3.0 3.5 4.0 4.5 5.0 5.5	6.16 6.66 7.11 7.52 7.77 8.13	38 39 40 41 42 42			28.5 30.8 32.9 34.8 35.0 37.7	19.0 20.6 22.0 23.2 24.0 26.1	14.3 15.4 16.4 17.4 18.0 18.8	10.7 11.6 12.4 13.1 13.5 14.1	

 $(E_a = 50-70\%)$

Micro-Irrigation
$$(E_a = 80-95\%)$$


Sprinkler Irrigation

 $(E_a = 70-80\%)$

Micro (or Drip) Irrigation

Micro Irrigation

- Water is dripped onto the soil slowly (2-20 L/hr) from a network of small diameter pipes called emitters
- Only root zones receive water

Which irrigation method to use?

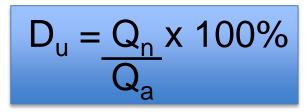
Soil type	Compatible methods
Loamy	All
Clay	All
Sandy	Sprinkler or drip only

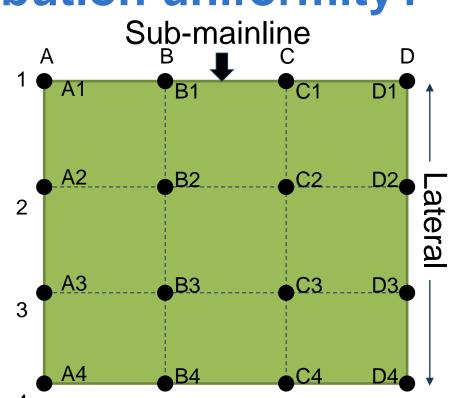
Aside from soil type, we need to consider crop types, available resources (technologies, labors, and budgets)

How to check distribution uniformity?

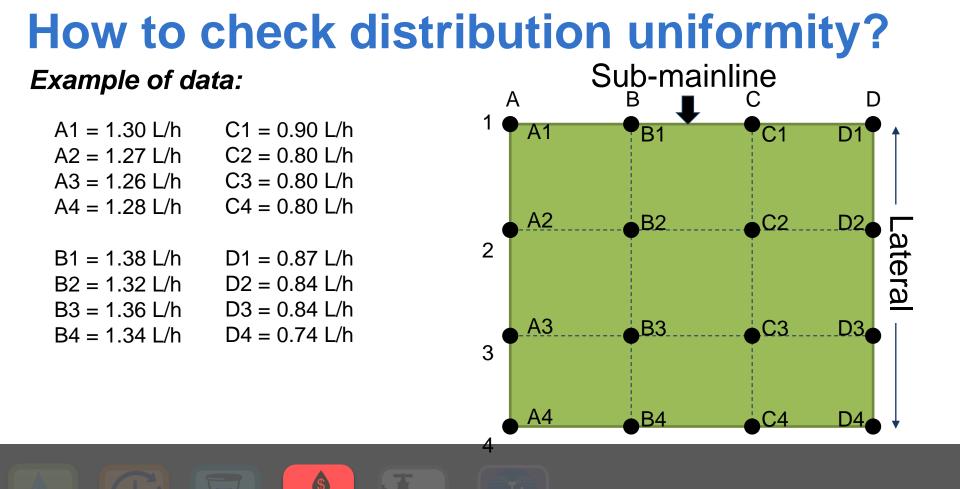
As the field is being irrigated, the water distribution in the plot can be checked using

"Catch Can Irrigation test"




How to check distribution uniformity?

16 Chase Cans are installed. Flow rates (**Q**) are measured at each check point and used to calculate the distribution uniformity (D_u):



when

 $Q_n = low quarter average flow rate$ $Q_a = average flow rate$

How to check distribution uniformity?

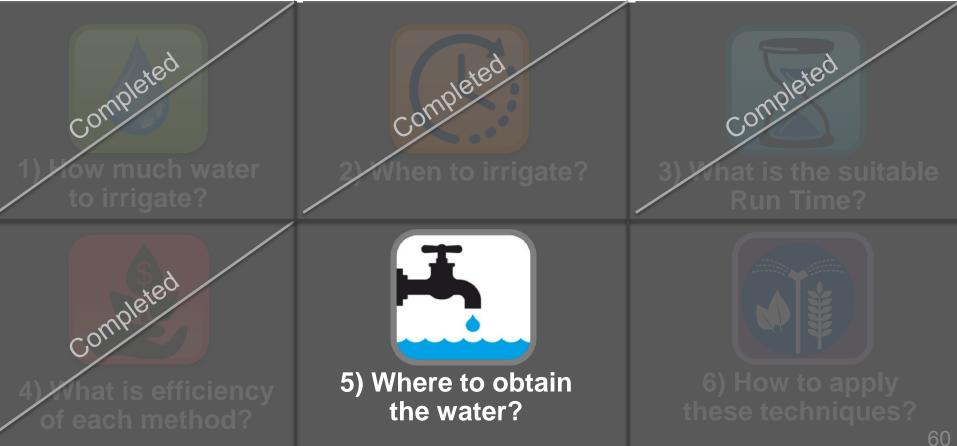
Solution

- 1) Rank the flow rates from max to min
 - Q1 = 1.38 L/h Q8 = 0.90 L/hQ2 = 1.36 L/h Q9 = 0.87 L/h
 - Q3 = 1.34 L/h Q10 = 0.84 L/h
 - Q4 = 1.32 L/h Q11 = 0.84 L/h

2) Determine Q_a and Q_n

$$Q_a = (Q_1 + Q_2 + ... + Q_{16})/n$$

= 17.10/16
= 1.06 L/h


 $Q_n = Q_{13} + Q_{14} + Q_{15} + Q_{16}$ = (0.80+0.80+0.80+0.74)/4 = 0.785 L/h

$$D_{u} = Q_{n}/Q_{a} \times 100\%$$

= 0.785/1.06x100%
= 74.05%

Class objectives

Irrigation techniques will answer the following:

Where to obtain water for irrigation?

- Surface Irrigation
- Ground Water

Where to obtain water for irrigation?

• What is the sizing of the pond/ reservoir for vegetable production?

Surface water is from rainfall at the lowest of the farmland.

The pond or reservoir can be constructed to the size equivalent to vegetable requirement

Where to obtain water for irrigation?

 What is the sizing of the pond/ reservoir for vegetable production?

Amount of Irrigation water (m³) = Area of Planting (m²) x ET_{veg} (mm/day) x Growth day x Time of planting / (E_ax1,000)

Eq. 4

Example

Given an area of planting is 8,000 m² Evapotranspiration 6 mm/day Growth day is 20 day with 5 times for planting Drip irrigation method is used

Solution Size of pond = $8,000 \text{ m}^2 \times 6 \text{ mm/day} \times 20 \text{ day} \times 5 \text{ times}$ $0.80 \times 1,000$

 $= 4,800 \text{ m}^3$

Where to obtain water for irrigation? • Ground Water

From secondary data, the level and capacity of the ground water in the well can be obtained.

The capacity of ground water can be used to design the size of planning:

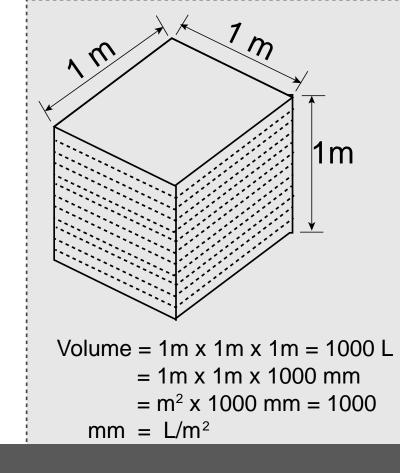
Area for service = Capacity of well pump (m³/hr) Capacity of planting (m³/hr)

Ea.5

Example

Find the area for irrigation service for morning glory of which evapotranspiration is 5 mm/day

given the capacity of all pump is 6 m³/hr


The Run Time is 3-h drip irrigation with 15 working hours/day

Solution

Given ET_{ve g} = 5 mm/day = 5 L/m²/day

1) Find IWR_{veg} IWR_{veg} = ET_{veg}/E_a = 5/0.8 = 6.25 L/m²/day

2) Find the number of plots Given

Working hour = 15 hr/day Run Time = 3 hr

Thus, the number of plots = 15/3

= 5 plots

2) Find the number of plots Given

Working hour = 15 hr/day Run Time = 3 hr

Thus, the number of plots = 15/3

3) Find IWR/ plot

From 1), IWR = 6.25 liter/m²/plot

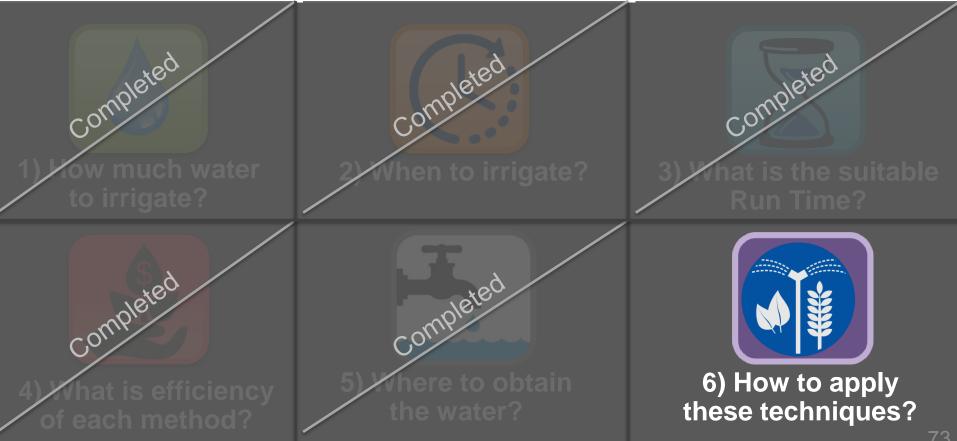
and Run Time = 3 hr

IWR/plot/hr = 6.25/3

- $= 2 L/hr/m^2$
- $= 0.002 \text{ m}^3/\text{hr/m}^2$

The irrigation area service/plot

 $= 6 \text{ m}^{3}/\text{hr} / 0.002 \text{ m}^{3}/\text{hr}/\text{m}^{2}$


$$= 3,000 \text{ m}^2$$

Thus, the irrigation area service for the total area = $3,000 \text{ m}^2 \times 5 \text{ plots}$ = $15,000 \text{ m}^3$

Class objectives

Irrigation techniques will answer the following:

Fundamental of irrigation

Irrigating water flows through the pipe under low pressure (20 mH₂O) and through the emitter at an adjustable, suitable flow rate to the soil

How to apply micro-irrigation method to your situation?

- Key: select proper components:
- 1) emitters
- 2) pipes (riser, lateral, sub-mainline, main line)
- 3) pump

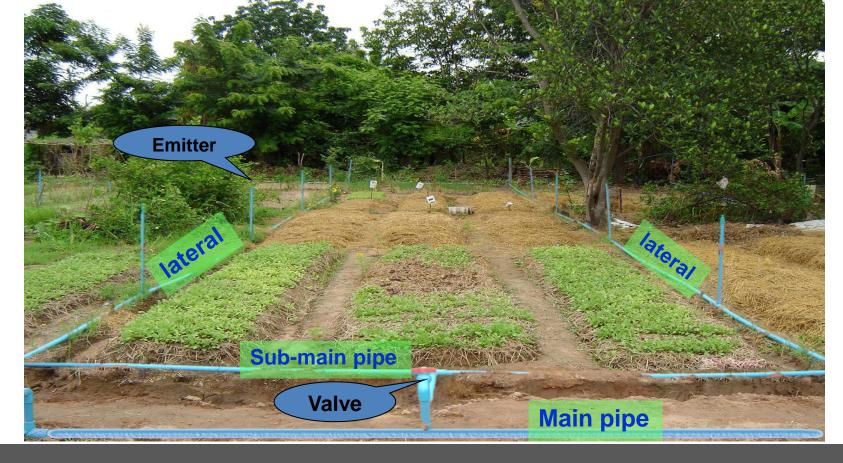
Table 7A

Emitter Selection Data :

Diameter of coverage (m); to select suitable of canopies see figure I.

Pressure head (m); to select Pressure head of Pump.

Discharge (Liter/hr.); to determine runtime schedule.


Table 7B

Pipe Size Selection Data :

Lateral size

- PVC Ø ¾"	Capacity	2.80	m3/hr (2,800 litrs/hr)
- PVC Ø 1"	Capacity	5.10	m3/hr (5,100 litrs/hr)
Sub-Mainline			
- PVC Ø 1"	Capacity	5.10	m3/hr (5,100 litrs/hr)
- PVC Ø 11/2"	Capacity	11.00	m3/hr (11,000 litrs/hr)
- PVC Ø 2"	Capacity	16.00	m3/hr (16,000 litrs/hr)
Mainline			
Mainline - PVC∅1"	Capacity	3.90	m3/hr (3,900 litrs/hr)
	Capacity Capacity	3.90 8.00	m3/hr (3,900 litrs/hr) m3/hr (8,000 litrs/hr)
- PVC Ø 1"			
- PVC \varnothing 1" - PVC \varnothing 1 ¹ / ₂ "	Capacity	8.00	m3/hr (8,000 litrs/hr)

How to apply micro-irrigation method to your situation?

Key: select proper components:

1) emitters

(drip, spray, and micro sprinkler)

2) pipes3) pump capacity

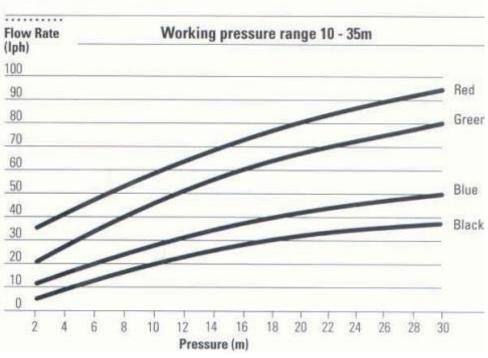
• Drip

Woodpecker Nipple Outlet (1,2,4, or 8 L/hr)

Woodpecker Barbed Outlet (1,2,4, or 8 L/hr)

Woodpecker P. C. J. Pressure Compensating Junior Nipple Outlet (2 or 4 L/hr)

Woodpecker P. C. J. Pressure Compensating Junior Barbed Outlet (2 or 4 L/hr)

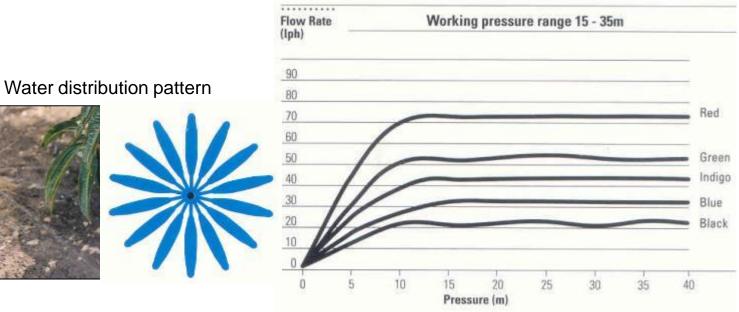


Spray

Need to know radius of wetted area, flow rate, and working pressure

Performance Chart

Spray


Nozzle Code	Discharge*	Wetting*	Pipe Diameter	Emitter Spacing On Lateral in m											
(mm)	(lph)	Radius (m)	0.D. mm	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5		
			16	26	24	22	21	20	19	18	18	17	16		
Black	25	1.2	17.8	32	29	27	26	24	23	22	22	21	20		
(0.9)			20	40	37	34	33	31	30	28	27	27	26		
			16	20	19	18	17	16	15	14	14	13	13		
Blue	34	1.6	17.8	25	23	21	20	19	18	18	17	16	16		
(1.3)			20	32	29	27	26	25	23	23	22	21	20		
			16	15	14	13	12	12	11	11	10	10	10		
Green	55	1.8	17.8	19	17	16	15	14	14	13	13	12	12		
(1.7)			20	24	22	21	19	18	18	17	16	16	15		
			16	14	13	12	11	11	10	10	10	9	9		
Red	70	2.1	17.8	18	16	15	14	13	13	12	12	11	11		
(2.0)			20	22	21	19	18	17	16	16	15	15	14		

* At 1.5 atm, 25 cm high.

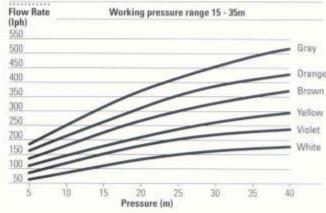
Spray

Performance Chart

Spray

Table 9 Maximum No. of Emitters per Lateral

Nozzle Code	Discharge	Wotting	Emitter	Pipe	e dian	neter	16 (00) mm ((Pipe	diame	ter 17	.8 (00) mm	Pipe	diame	eter 20	(OD)	mm
(mm)	(lph)	Radius*	Spacing		Inlet p	ressu	ire (at	m) /	1	nlet p	ressu	re (atr	n)	Ir	let pr	essur	e (atm	1)
		(m)	(m)	1.6	2.0	2.4	2.8	3.5	1.6	2.0	2.4	2.8	3.5	1.6	2.0	2.4	2.8	3.
			3	17	31	38	44	46	21	37	46	53	56	26	47	58	67	70
Black	20	1.80	4	15	28	34	39	41	19	34	42	48	50	24	43	53	60	63
(0.8)			5	14	26	32	36	38	17	31	38	44	46	22	39	49	56	58
No. ANN			6	13	24	30	34	36	16	29	36	41	43	20	37	45	52	55
			3	13	24	30	34	39	16	29	36	41	48	20	36	45	52	60
Blue	30	2.10	4	12	21	27	30	36	15	26	32	37	43	18	33	41	47	54
(1.0)			5	11	20	25	28	33	13	24	30	34	40	17	30	38	43	50
		6	10	19	23	26	31	13	22	28	32	37	16	28	35	40	47	
			3	11	20	24	28	32	13	24	29	34	39	17	30	37	42	50
Dark Blue	41	2.60	4	10	18	22	25	29	12	21	26	30	35	15	27	33	38	45
(1.1)			5	9	16	20	23	27	11	20	24	28	33	14	25	31	35	41
			6	8	15	19	22	25	10	18	23	26	30	13	23	29	33	38
			3	9	17	21	23	25	11	20	25	28	30	14	25	31	36	38
Green	53	2.80	4	8	15	19	21	22	10	18	22	26	27	13	23	28	32	34
(1.2)			5	8	14	17	20	21	9	17	21	24	25	12	21	26	30	31
			6	7	13	16	18	19	9	16	19	22	23	11	20	24	28	29
			3	8	14	17	20	23	9	17	21	24	28	12	21	26	30	35
Red	70	3.00	4	7	13	16	18	21	8	15	19	21	25	11	19	24	27	32
(1.4)			5	6	12	14	16	19	8	14	17	20	23	10	18	22	25	29
			6	6	11	13	15	18	7	13	16	19	22	9	17	20	23	27
		* At 25	cm high															



Micro-sprinklers

Need to know radius of wetted area, flow rate, and working pressure

Performance Chart

Nozzle Code Discharge* Wetting* Lateral Emitter Spacing on lateral in m **Pipe Diameter** (lph) Radius (m) (mm) 0.D. mm Number of sprinklers ġ White 7.25 (1.6) Violet 7.25 (1.8) ĥ Yellow 7.25 [2.0] ĥ 7.25 Brown A Ŕ (2.2) Б Orange 7.25 (2.4)Gray 7.0 (2.6)* At 2.0 atm on 70 cm Rod

Maximum No. of Emitters on Lateral

Table 10

Our invention: IRRE1 an all-in-one emitter

KU Department of Irrigation Engineering developed "IRRE1" an all-in-one emitter.

The flow rate (**Q**) and diameter coverage of our emitter are adjustable.

IRRE: Performance Table

Table 11

Working pressure (m)	Emitters Adjusting (Round)	Flow rate (L/hr)	Wetting Radius (m)	Spacing (mxm)	Uniformity of Coefficient (Cu %)	Precipitation Rate (mm/hr)
5	2	360	3.0	4.0 x 4.0	89.63	22.50
5	3	480	3.5	4.0 x 4.0	78.74	33.00
10	2	520	3.5	4.0 X 4.0	90.44	32.50
10	3	660	4.0	4.0 X 4.0	81.20	41.25
15	2	430	3.5	4.0 X 4.0	80.00	26.88
15	3	640	4.0	4.0 X 4.0	85.37	40.00

How to apply micro-irrigation method to your situation?

Key: select proper components:

- 1) emitters
- 2) pipes
- 3) pump capacity

Pipes Lateral pipes

• PE • PVC

PHOON able 12	wall thickness (mm)	dispensing rate (L/cm)		maximum pressure (m)		neter nm) outer	
TYPHOON 10	0.25	1.65	2.60	7.0	16.0	16.5	
TYPHOON 13	0.33	1.75	2.70	8.5	15.9	16.5	
TYPHOON 16	0.40	1.75	2.70	10.0	15.7	16.5	
TYPHOON 20	0.50	1.75	2.75	14.0	15.5	16.5	
TYPHOON 25	0.64	1.75	2.75	18.0	15.4	16.7	
TYPHOON 35	0.90	2.00	3.00	25.0	15.2	17.0	
SUPER TYPHOON 100	0.25	1.60	2.50	10.0	16.0	16.5	
SUPER TYPHOON 125	0.32	1.65	2.60	14.0	15.9	16.5	
PYTHON 100	0.25	1.55	-	9.0	20.8	21.2	
PYTHON 135	0.34	1.55	-	12.0	20.8	21.5	

dispensing rate (L/cm) vs. pressure (m)

		100N 0	1000	100N 6, 20		100N 5		100N 15		100N r 100	1000	100N r 125	PYTHON 100 135
5 m	1.18	1.87	1.26	1.92	1.26	1.97	1.43	2.15	1.15	1.81	1.18	1.97	1.09
10 m	1.65	2.60	1.75	2.70	1.75	2.75	2.00	3.00	1.60	2.50	1.65	2.60	1.55
15 m	2.00	3.14	2.13	3.26	2.13	3.33	2.42	3.61	1.94	3.04	2.00	3.14	1.87
20 m	2.30	3.60	2.44	3.75	2.44	3.83	2.76	4.13	2.23	3.47	2.30	3.60	2.18
อัตราการว่ายน้ำ (สิตร/สม.)	1.65	2.60	1.75	2.70	1.75	2.75	2.00	3.00	1.60	2.50	1.65	2.60	1.55



• Sub-mainline or manifold

PE HDPE PVC

Pipes

• Mainline

HDPE Rigid PVC Asbestos Cement

Table 13. Correlation factor depends on the number of outlets

Number of outlets	F	Number of outlets	F
1	1.00	8-9	0.41
2	0.64	10-11	0.40
3	0.54	12-15	0.39
4	0.49	16-20	0.38
5	0.46	21-30	0.37
6	0.44	31-70	0.36
7	0.43	>70	0.36

Table 14Size and friction loss of LDPE pipe class 2.5

Flow rate	1(6 mm	20 mm				
Q (m ³ /h)	V (m/s)	J (m/100m)	V (m/s)	J (m/100m)			
0.25	0.48	2.769	0.29	0.834			
0.29	0.56	3.645	0.34	1.098			
0.33	0.63	4.631	0.39	1.394			
0.37	0.71	5.724	0.43	1.724			
0.41	0.78	6.922	0.48	2.084			
0.45	0.86	8.225	0.53	2.477			
0.49	0.94	9.630	0.57	2.900			
0.53	1.01	11.136	0.62	3.353			
0.57	1.09	12.742	0.67	3.837			
0.61	1.17	14.448	0.71	4.351			
0.65	1.24	16.251	0.76	4.894			
0.69	1.32	18.152	0.81	5.466			
0.73	1.40	20.148	0.85	6.067			
0.77	1.47	22.241	0.90	6.697			
0.81	1.55	24.428	0.95	7.356			
0.85	1.63	26.708	0.99	8.043			
0.89	1.70	29.083	1.04	8.758			
0.93	1.78	31.550	1.09	9.501			
0.97	1.86	34.109	1.10	10.271			

 Table 14 (cont.)
 Size and friction loss of LDPE pipe class 2.5

Flow rate	1(6 mm	2	0 mm
Q (m³/h)	V (m/s)	J (m/100m)		J (m/100m)
1.05	2.01	39.501	1.23	11.895
1.09	2.09	42.333	1.27	12.748
1.13	2.16	45.255	1.32	13.628
1.17	2.24	48.266	1.37	14.534
1.21			1,41	15.468
1.25			1.46	16.428
1.29			1.51	17.415
1.33			1.56	18.429
1.37			1.60	19.468
1.41			1.65	20.534
1.45			1.70	21.626
1.49			1.74	22.744
1.53			1.79	23.887
1.57			1.84	25.057
1.61			1.88	26.252
1.65			1.93	27.473
1.69		,	1.98	28.719
1.73		,	2.02	29.990
1.77			2.07	31.287
1.81			2.12	32.609
1.85			2.16	33.956

Flow rate	3⁄4	inch	1 inch		Flow rate	1 ½ in	ch	2 inch		
Q (m³/h)	V (m/s)	J (m/100m)	V (m/s)	J (m/100m)	Q (m³/h)	V (m/s)	J (m/100m)	V (m/s)	J (m/100m	
1.20	0.88	4859	0.47	1.073	4.25	0.80	1.847	0.51	0.626	
1.30	0.95	5635	0.51	1.244	4.50	0.85	2.053	0.54	0.695	
1.40	1.02	6.464	0.55	1,427	4.75	0.89	2.269	0.57	0.769	
1.50	1.10	7.345	0.59	1.621	5.00	0.94	2.495	0.6	0.845	
1.60	1.17	8.278	0.63	1.827	5.25	0.99	2.731	0.63	0.925	
1.70	1.24	9.262	0.67	2,044	5.50	1.03	2.977	0.66	1.008	
1.80	1.32	10.296	0.71	2.273	5.75	1.08	3.232	0.69	1.095	
1.90	1.39	11.8	0.75	2.512	6.00	1.13	3.497	0.72	1.185	
2.00	1.46	12.514	0.79	2,762	6.25	1.17	3.772	0.75	1.278	
2.10	1.54	13.698	0.83	3.024	6.50	1.22	4.056	0.78	1.374	
2.20	1.61	14.93	0.87	3.296	6.75	1.27	4.350	0.81	1.474	
2.30	1.68	16.211	0.9	3.578	7.00	1.32	4.653	0.84	1.576	
2.40	1.76	17.541	0.94	3.872	7.25	1.36	4.966	0.87	1.682	
2.50	1.83	18.918	0.98	4.176	7.50	1.41	5.287	0.90	1.791	
2.60	1.90	20.343	1.02	4,491	7.75	1.46	5.618	0.93	1.903	
2.70	1.97	21.816	1.06	4.816	8.00	1.50	5.959	0.96	2.019	
2.80	2.05	23.336	1.10	5.151	8.25	1.55	6.308	0.99	2.137	
2.90	2.12	24.903	1.14	5.497	8.50	1.60	6.667	1.02	2.258	
3.00	2.19	26.517	1.18	5.853	8.75	1.64	7.034	1.05	2.383	
3.10	2.27	28.144	1.22	6.220	9.00	1.69	7.411	1.08	2.511	

Table 15Size and fraction loss of PVC pipe class 8.5

96

Flow rate	3⁄4	inch	1 inch		Flow rate	1 ½ in	ch	2 inch		
Q (m³/h)	V (m/s)	J (m/100m)	V (m/s)	J (m/100m)	Q (m³/h)	V (m/s)	J (m/100m)	V (m/s)	J (m/100m)	
3.20	2.34	29.883	1.26	6.597	9.25	1.74	7.797	1.11	2.641	
3.30	2.41	31.636	1.30	6.983	9.50	1.79	8.192	1.14	2.775	
3.40	2.49	33.434	1.34	7.380	9.75	1.83	8.595	1.17	2.912	
3.50			1.38	7.787	10.00	1.88	9.008	1.21	3.052	
3.60			1.42	8.204	10.25	1.93	9.429	1.24	3.194	
3.70			1.46	8.631	10.50	1.97	9.860	1.27	3.340	
3.80			1.49	9.068	10.75	2.02	10.299	1.3	3.489	
3.90			1.53	9.515	11.00	2.07	10.747	1.33	3.641	
4.00			1.57	9.972	11.25	2.11	11.204	1.36	3.795	
4.10			1.61	1.439	11.5	2.16	11.669	1.39	3.953	
4.20			1.65	10.915	11.75	2.21	12.143	1.42	4.114	
4.30			1.69	11.401	12.00	2.26	12.626	1.45	4,277	
4.40			1.73	11.897	12.25	2.30	13.117	1.48	4.444	
4.50			1.77	12.4.3	12.50	2.35	13.618	1.51	4.613	
4.60			1.81	12.918	13.00	2.44	14.643	1.57	4.961	
4.70			1.85	13.443	13.50	2.54	15.704	1.63	5.320	
4.80			1.89	13.978	14.00			1.69	5.691	
4.90			1.93	14.522	14.50			1.75	6.073	
5.00			1.97	15.075	15.00			1.81	6.466	
5.10			2.01	15.639	15.50			1.87	6.871	
5.20			2.05	16.211	16.00			1.93	7.287	
5.20			2.05	16.211	16.00			1.93	7.287	

Table 15 (cont.)Size and fraction loss of PVC pipe class 8.5

97

Table 15 (cont.)Size and fraction loss of PVC pipe class 8.5

Capacit	y 2	2 1/2 inch	3 inch		Capzcity		4 inch	5 inch		
Q = m ³ /h	r. V = m/s	J = m/100 m	V = m/s	J = m/100 m	Q = m³/hr.	V = m/s	J = m/100 m	V = m/s	J = m/100 m	
10.50	0.78	1.030	0.57	0.478	24.00	0.79	0.658	0.53	0.242	
11.25	0.84	1.171	0.61	0.543	26.00	0.86	0.763	0.57	0.281	
12.00	0.89	1.320	0.65	0.612	28.0	0.92	0.875	0.61	0.322	
12.75	0.95	1.476	0.69	0.684	30.00	0.99	0.995	0.66	0.366	
13.50	1.00	1.641	0.73	0.761	31.50	1.04	1.089	0.69	0.401	
14.25	1.06	1.814	0.77	0.841	33.00	1.09	1.187	0.72	0.437	
15.00	1.12	1.995	0.81	0.925	34.50	1.14	1.288	0.75	0.474	
15.75	5 1.17	2.184	0.85	1.012	36.00	1.19	1.394	0.79	0.513	
16.50	1.23	2.380	0.89	1.103	37.50	1.24	1.504	0.82	0.553	
17.25	1.28	2.584	0.94	1.198	39.00	1.29	1.617	0.85	0.595	
18.00	1.34	2.796	0.98	1.296	40.50	1.34	1.734	0.89	0.638	
18.75	1.39	3.016	1.02	1.398	42.00	1.39	1.855	0.92	0.683	
19.50	1.45	3.243	1.06	1.503	43.50	1.43	1.979	0.95	0.728	
20.25	1.51	3.478	1.10	1.612	45.00	1.48	2.107	0.98	0.776	
21.00	1.56	3.720	1.14	1.724	46.50	1.53	2.239	1.02	0.824	
21.75	1.62	3.970	1.18	1.840	48.00	1.58	2.375	1.05	0.874	
22.50	1.67	4.227	1.22	1.959	49.50	1.63	2.514	1.08	0.925	
23.25	1.73	4.492	1.26	2.082	51.00	1.68	2.657	1.12	0.978	

98

How to apply micro-irrigation method to your situation?

Key: select proper components:

- 1) emitters
- 2) pipes
- 3) pump capacity

Pump Capacity

 Table 16.
 Data for selecting pump size

	Motor		Capacity - m ³ /H or L/min											
Туре			0	8	10	12	14	16	18	20	25	30	35	40
			0	133	167	200	233	267	300	333	417	500	583	667
WR	HP	Kw		Tot. head in m										
40-125 C	2	1.5	18.5	18.5	18.3	18.1	17.8	17.5	17.1	16.6	14.8	12.5	9.4	
40-125 B	3	2.2	22.0		22.0	22.0	21.8	21.5	21.2	20.8	19.4	17.5	14.8	
40-125 A	4	3	26.5		26.5	26.3	26.1	25.8	25.4	25.0	23.7	22.0	19.8	17.2
40-160 C	4	3	31.8		31.2	30.8	30.4	29.8	29.2	28.6	26.6	24.1	21.2	
40-160 B	5.5	4	36.4			35.6	35.2	34.7	34.3	33.6	31.8	29.4	26.5	23.2
40-160 A	7.5	5.5	39.4			39.2	39.0	38.6	38.2	37.6	35.9	33.8	31.1	28.1
40-200 C	5.5	4	45.0			43.5	43.0	42.2	41.3	40.8	38.0	33.7	28.0	
40-200 B	7.5	5.5	48.2			47.0	46.5	45.7	45.1	44.5	42.1	39.0	34.5	
40-200 A	10	7.5	57.5			56.0	55.5	55.0	54.5	54.0	51.6	49.0	45.1	40.0
40-250 C	12.5	9	69.0			66.5	65.0	64.0	62.5	61.5	57.5	52.0	45.0	
40-250 B	15	11	76.0			72.5	71.0	70.0	69.0	67.5	64.0	59.0	53.0	45.0
40-250 A	20	15	92.0			89.0	88.0	86.5	85.5	84.7	82.2	79.0	75.0	70.0

HP e Kw Potenza nominale motore - HP and Kw nominal motor power - CV et Kw puissance nominale moteur

- Identify the location of water supply
- Identify number of plot
- Calculate of the number of emitters in a plot, and determine capacity of system
- Layout: lateral, sub-main line, main line
- Calculate total dynamic head loss
- Use capacity of system and total dynamic loss to select pump size

• Find maximum consumptive use

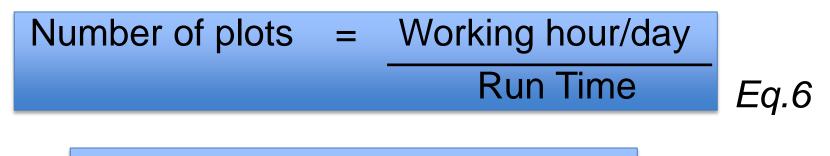
$$ET_{veg} = 0.8 \times E_p \qquad (mm/day)$$

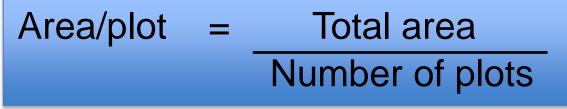
$$ET_{veg} = 0.5 \times D^2 \times E_q \qquad (l_plant/day)$$

$$ET_{tree} = 0.5 \times D^2 \times E_p$$
 (L/plant/day)

$$IWR = ET_{veg}$$

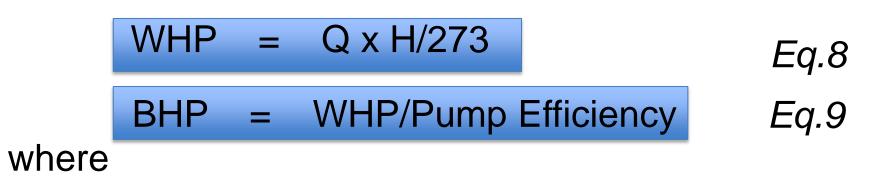
(L/plant/day)




Calculate Run Time

Run Time = IWR Flow rate of emitters

Number of plot/zones



Eq.7

Design of Pump and Motor

- $Q = discharge (m^3/hr)$
- H = total dynamic head loss
 - = static head loss + friction loss from pipe + working pressure

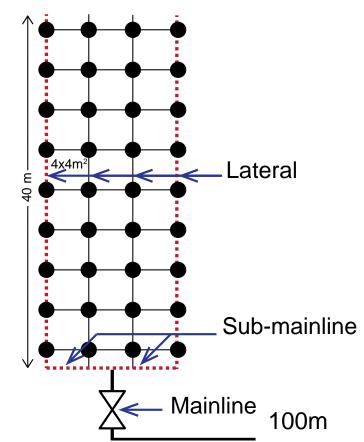
- To select a proper pipe size, we must know
- 1) Radius of wetted area
- 2) Flow rate
- 3) Working pressure

These parameters define the proper pipe size in Table 7A-C.

1) Select emitters From Table 11,

Worki pressur	Emitters Adjusting (Round)	Flow rate (L/ hr)	Wetting Radius (m)	Spacing (mxm)	Uniformity of Coefficient (Cu %)	Precipitation Rate (mm/hr)
5	2	360	3.0	4.0 x 4.0	89.63	22.50
5	3	480	3.5	4.0 x 4.0	78.74	33.00
10	2	520	3.5	4.0 X 4.0	90.44	32.50
10	3	660	4.0	4.0 X 4.0	81.20	41.25
15	2	430	3.5	4.0 X 4.0	80.00	26.88
15	3	640	4.0	4.0 X 4.0	85.37	40.00

2) To select lateral pipe, we need to know


- flow rate
- number of emitters

Example

Here we have 10 emitters with a flow rate of 360 L/h.

Thus, lateral flow rate (Q_{lateral}) = number of emitters x flow rate

- = 10 x 360 L/h = 3,600 L/h
- $= 3.6 \text{ m}^{3}/\text{h}$

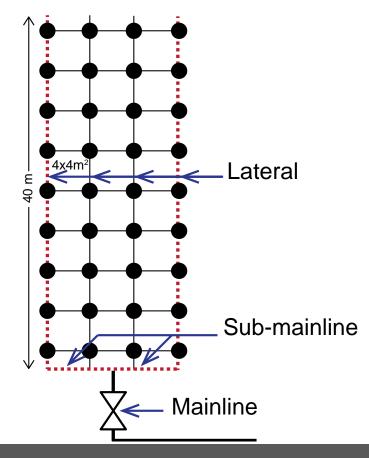

3) Based on the calculated flow rate, we can select the proper pipe size

Table 7B

Pipe Size Selection Data :

Lateral size

- PVC Ø ¾"	Capacity	2.80	m3/hr (2,800 litrs/hr)
- PVC Ø 1"	Capacity	5.10	m3/hr (5,100 litrs/hr)
Sub-Mainline			
- PVC Ø 1"	Capacity		m3/hr (5,100 litrs/hr)
- PVC Ø 1½"	Capacity	.00	m3/hr (11,000 litrs/hr)
- PVC 🖉 2"	Ma coloct this	16.00 bo	m3/hr (16,000 litrs/hr)
Mainline		hihe ne	cause
- pvc Ø 1"	its Q is larger t	han 3.6	m ³ /h _n (3,900 litrs/hr)
- PVC Ø 1½"	Capacity	8.00	m3/hr (8,000 litrs/hr)
- PVC Ø 2"	Capacity	13.60	m3/hr (13,600 litrs/hr)
- PVC Ø 2½"	Capacity	20.25	m3/hr (20,250 litrs/hr)
- PVC Ø 3"	Capacity	27.75	m3/hr (27,750 litrs/hr)

3) To select sub-mainline pipe, we need to know

its flow rate, which equals to the combined flow rate of its branched lateral pipes.

Q_{sub-mainline}

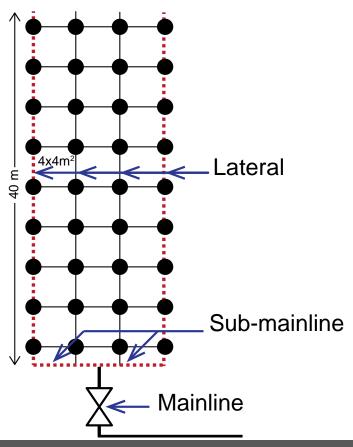

= number of branched lateral pipes x $Q_{lateral}$ = 2 x 3.6 = 7.2 m³/h

Table 7B

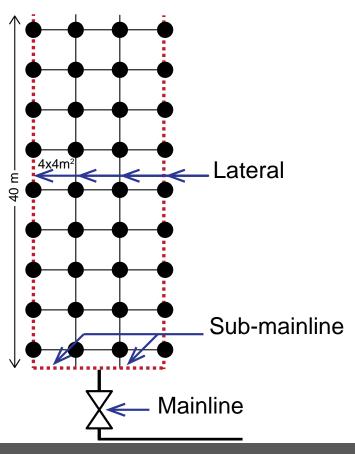
Sub-Mainline

- PVCØ1"	Capacity	5.10	m3/hr (5,100 litrs/hr)
- PVC Ø 1½"	Capacity	11.00	m3/hr (11,000 litrs/hr)
- PVC Ø 2"	Capacity	.00	m3/hr (16,000 litrs/hr)
	We select this Q is larger than	Dipe bec 7.2 m ³ /	ause its h

3) To select the mainline pipe, we need to know its flow rate, which equals to the combined flow rate of its branched sub-mainline pipes.

Q_{mainline}

= number of branched lateral pipes x $Q_{sub-mainline}$ = 2 x 7.2 = 14.4 m³/h


Table 7B

Mainline

- pvc Ø 1"	Capacity 3.90	m3/hr (3,900 litrs/hr)
- PVC Ø 1½"	Capacity 8.00	m3/hr (8,000 litrs/hr)
- PVC Ø 2"	Capacity 13.60	m3/hr (13,600 litrs/hr)
- PVC Ø 2½"	Capacity 20.25	m3/hr (20,250 litrs/hr)
- PVC Ø 3"	Capacity 7.75	m3/hr (27,750 litrs/hr)

We select this pipe because its Q is larger than 14.4 m³/h

How to select the pump

3) To select the pump, we need to know the friction loss in lateral, sub-mainline, and mainline pipes

$$H_{f} = JxFxL$$

Eq.10

- where $H_f = friction loss in pipes (m)$ J = friction loss (m/100m, Tables 14-15) E = correlation factor (Table 13)
 - F = correlation factor (**Table 13**)

How to select the pump

Previously, we selected the lateral pipes of 1 inch diameter with a flow rate of 3.6 m^3 /h. Along its length of 40 m, 9 emitters are installed.

The friction loss in the lateral pipes can be calculated:

From Table 15,

J is 8.20 m/100 m for a 1inch-diameter PVC pipe at a flow rate of 3.6 m³/h

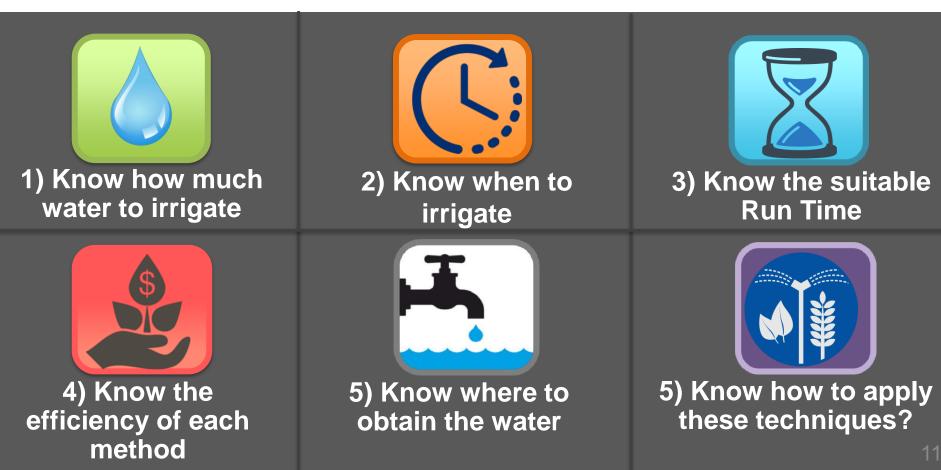
From Tables 13,

F is 0.41 for 9 outlets

Thus, $H_{f, \text{ lateral}} = 8.20/100 \text{ x} 0.41 \text{ x} 40 = 1.34 \text{ m}$

For sub-mainline and mainline pipes, we can calculate their friction loss similarly (*the answers are 0.14 and 1.995 m, respectively*)

How to select the pump


From Eq. 9, BHP

To select a commercially-available pump:

Table 5, for Q = 16^{3} /h and total head = 17.5, the proper model of pump is WR 40-125C (2 HP)

I hope that you now...

THANK YOU for your attention

QUESTIONS?