Basic applied aspects of vegetable breeding & seed production

Narinder Dhillon

Global Cucurbit Breeder World Vegetable Center

narinder.dhillon@worldveg.org

Vegetable?

An edible part (as root, tuber, stem, leaves inflorescence, fruit or seed) that is used as human food and usually eaten cooked or raw during the principle part of a meal rather than as a dessert – contrasted with fruit

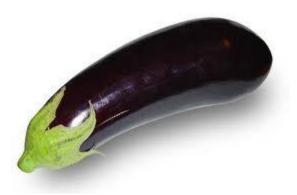
Watermelon is also a vegetable?

It is planted from seeds/seedlings, harvested, and then cleared from the field like other vegetables. Since watermelon is grown as a vegetable crop using vegetable production systems, watermelon is considered a vegetable

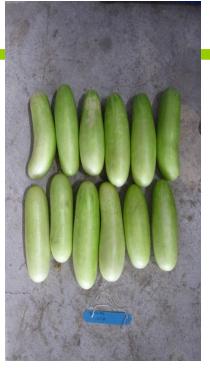
Plant breeding vs Vegetable breeding

Plant breeding is the art, science and business of improving plants for human benefit

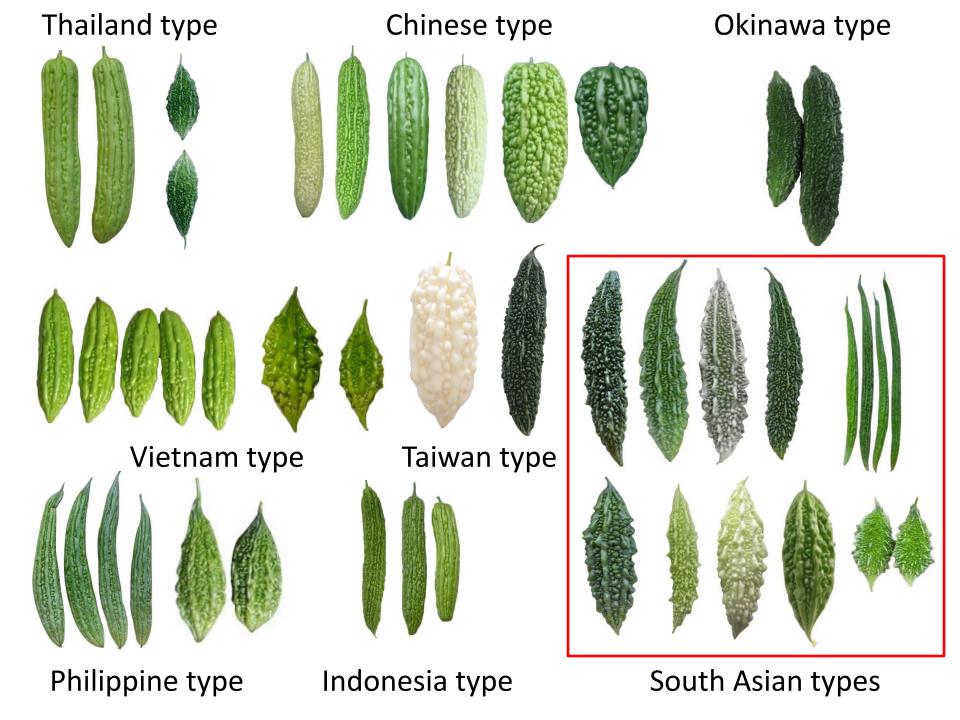
How vegetable breeding differ from crop breeding?

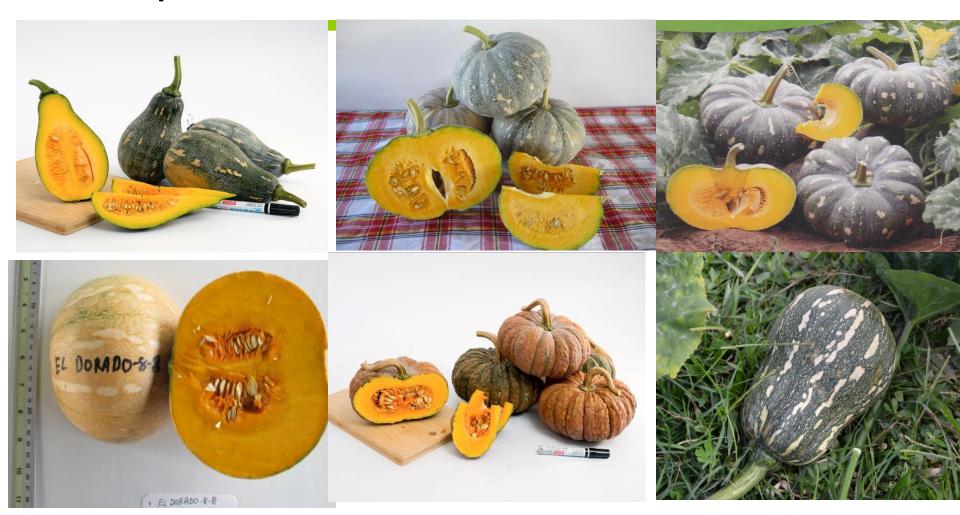

- Wide choice of different species
- Range of traits
- Local preferences
- Increasing breeding capacity with private-sector seed companies

Consumer preference



Cucumber market types





Pumpkin market types

Pumpkins in S. Korea

Melon market types

Carrot market types

When is a breeding program needed?

A breeding program is needed if


current varieties are not producing

up to the capacity of the

environment

Sponge gourd: Resistance to begomovirus

Cucumber: Resistance to Zucchini yellow mosaic virus

Bitter gourd: Resistance to powdery mildew

Bottle gourd: Resistance to ZYMV

Chili pepper: Resistance to anthracnose

Chili pepper: Resistance to leaf curl virus

Tomato: Resistance to Tomato yellow leaf curl virus

Types of cultivars

Pure line

■ F₁ hybrids

Open pollinated

Clones

Relation of Breeding Outputs

Variety Development

- Objectives
- Genetic variation
- Selection
- Stabilization
- Testing/seed increase

Outputs 1 and 2

Evaluation/Variety release

- Locations, years, seasons
- •On-station, on-farm
- Distinct, uniform, stable

National Varietal
Release Policy

Output 3

Seed systems

- Optimization (cost, purity, health)
- Male sterility (hybrids)

Methods of vegetable breeding

Introduction

Line breeding

Population breeding

Hybrid breeding

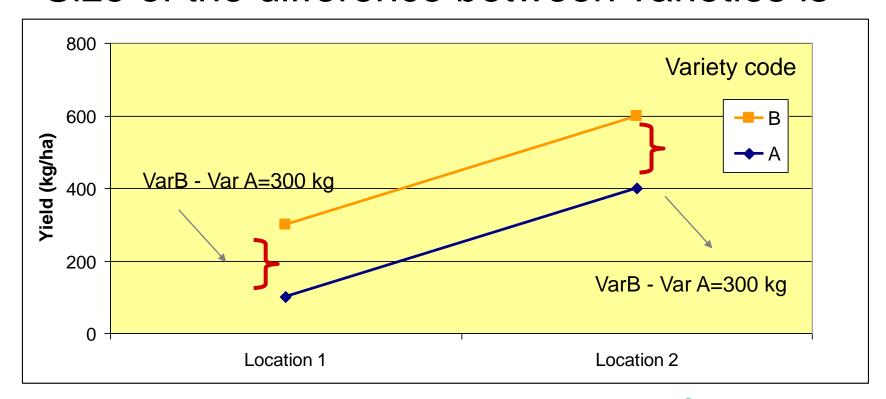
Clone breeding

Note: Mode of reproduction is the deciding factor to develop suitable breeding and selection methods.

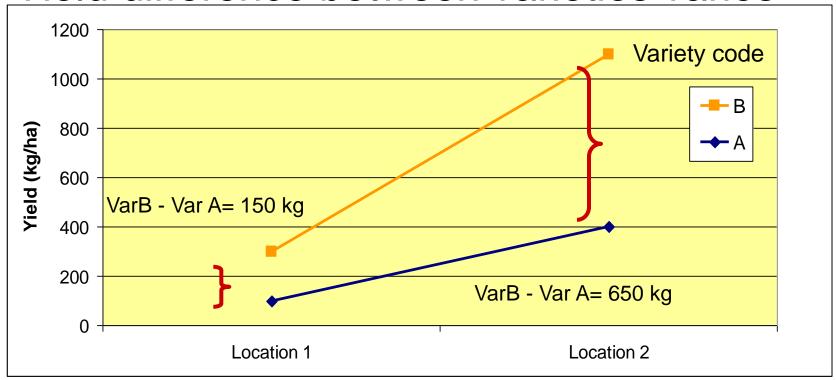
Phenotype vs. Genotype

$$P = G + E + (GxE)$$

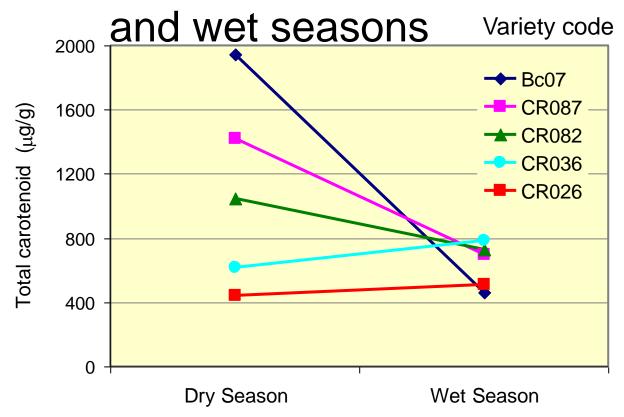
P is called the **phenotypic value**, i.e., the measurement associated with a particular individual


G is genotypic value, the effect of the genotype (averaged across all environments)

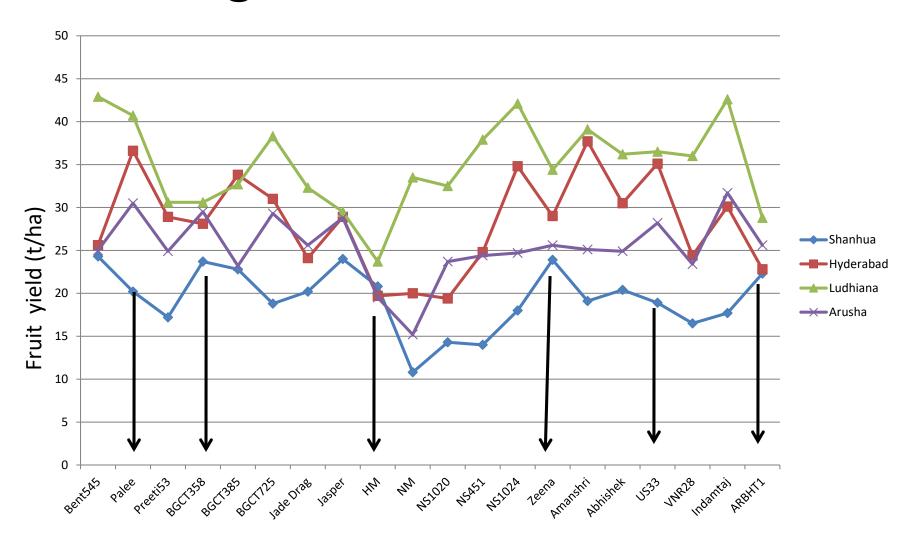
E is the effect of the environment (averaged across all genotypes)


No Genotype-Environment Interaction

- Variety ranking is same between locations 1 and 2
- Size of the difference between varieties is


GxE Interaction Present: Case 1

- Variety ranking is same between locations 1 and 2
- Yield difference between varieties varies


GXE Interaction Case 2:

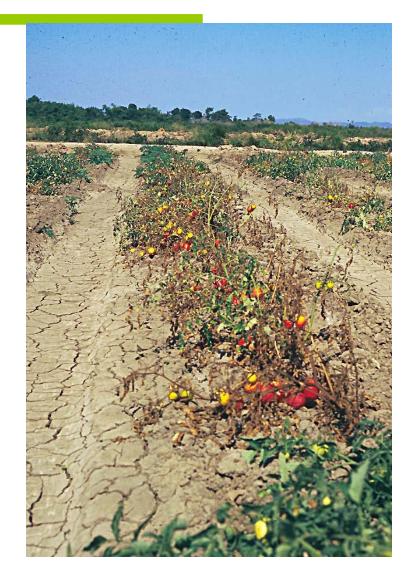
 Total Carotenoid Contents of choysum (Brassica rapa cvg. parachinensis) in dry

 Variety rank changes between seasons
 Changes in the magnitude of variety differences between seasons

Bitter gourd: Multi-location trial

ANOVA

Variation	Degree of freedom	Mean square	Computed F
Year (Y)	y - 1	MS 1	MS 1/MS 2
Rep/year	y (r – 1)	MS 2	
Genotypes (G)	g - 1	MS 3	MS 3/MS 4
ΥxG	(y-1)(g-1)	MS 4	MS 4/EMS
Pooled error	y (r – 1)(g – 1)	EMS	
Total	yrg - 1		


Conclusion for the breeder

A cultivar that is responsive to the environment may be released for a narrowly defined area of adaptation, whereas another that has a low G x E interaction may be suitable for release for use over a wider region of production

Planning Variety Trials

- " Too little time and effort is put into the planning of experiments."
- Cochran and Cox, 1957

Varieties

- Varieties differ in yield potential, adaptation, disease/pest resistance, quality, nutrient content
- From many potential varieties we want to identify those varieties that consistently demonstrate outstanding performance and broad adaptation for traits of interest over a wide range of environments
- Environments can mean different locations, years, seasons

No Variety is the Best Everywhere

Variety A-Location 1

Variety A- Location 2

 Variety performance affected by temperatures, rainfall patterns, soil types, dominant diseases and insects, crop management in different environments

Objective of Variety Trials

- Methodical and unbiased comparison of varieties versus farmer-preferred varieties (checks) in target environments
- Proper choice of experimental design, checks, protocols is critical
- Basis for science-based recommendations

Define Target Environment

- Agroecology
 - Humid lowland tropics, Semi-arid tropics, Cool highlands
 - Red versus black soil
- Open field versus protected cultivation
- Season: dry, wet, 'regular' versus 'offseason'

Protected cultivation

Open-field, low input

Center 3

Define Target Farmer Group

- Market gardeners, commercial growers, processors
- Access to labor and credit, willingness/ability to buy inputs (fertilizer, pesticides, irrigation, seed), access to markets

Trial Sites

- Trial sites should be representative of the target environment (major soil types, altitudes, seasons, temperatures)
- Plan trial sowing and transplanting dates appropriately for target season

Protected cultivation

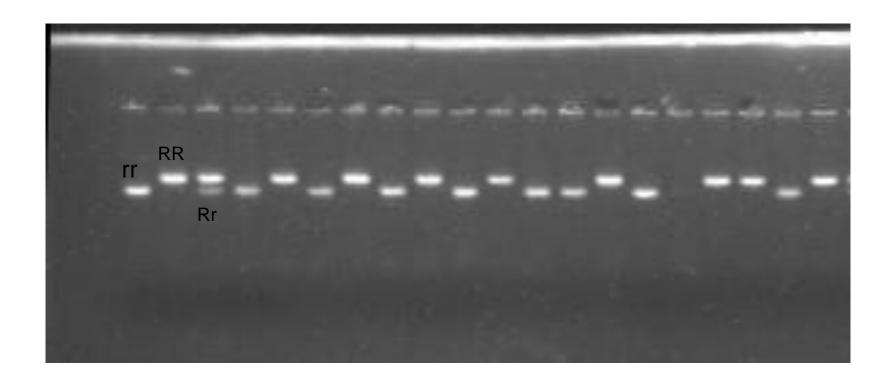
Open field

Conducting the Trial

- Choose trial sites representative of the target environment
- A uniform field is preferred for the trial soil fertility, soil texture, water-holding capacity, slope
- If field is not uniform, identify sources of variation and choose an experimental design that can help reduce "noise" from the variation
- Use the simplest possible statistical design with replication and randomization
- Consult with statistician BEFORE the experiment about plot sizes, arrangement of blocking, sample sizes

Crop Management

- Rule of thumb is to use practices of local progressive farmers
 - Fertilizer types, amounts, timing of application
 - Irrigated or rain-fed
 - Trellising
 - Disease, insect control methods



Major issues of vegetable breeding

- 1. Productivity
- 2. Shelf life
- 3. Quality traits
- 4. Disease and pest resistance
- 5. Wide adaptations
- 6. Tolerance to abiotic stresses

Molecular marker genotype visualization

By migrating DNA in an electric field,we can now 'see' genotypes

Molecular breeding – classical example

RZ-Info THE FIRST NASANOVIA APHID-FREE ICEBERG LETTUCE!

This is good news, not just for true vegetarians but for all consumers, as the annoying aphid problem in iceberg lettuce has been solved once and for all.

RIJK ZWAAN is the first seed breeding company in the world to have succeeded in crossbreeding resistance to the green lettuce-aphid into iceberg lettuce varieties (NAS-resistant).

> Goodbye, lettuce-aphid!

> > **WORLD-FIRST**

ICEBERG LETTUCE FORTUNAS RZ

Principles of vegetable seed production

Seed?

Reasons for the deterioration of variety

- 1. Developmental variations
- 2. Mechanical mixtures
- 3. Mutations
- 4. Natural crossing
- 5. Minor genetic variation
- 6. Selective influence of diseases
- 7. Technique of the breeder

Maintenance of genetic purity of seed

- Control of seed source
 - i. Breeder's seed
 - ii. Foundation seed
 - iii Registered seed
 - iv Certified seed
- 2. Crop rotation
- 3. Isolation
 - i. Isolation by time
 - ii. Isolation by distance

Maintenance of genetic purity – contd.

- 3. Roguing of seed crop
 - i. Vegetative stage
 - ii. Flowering stage
 - iii. Maturity stage
- 4. Seed certification
- 5. Grow-out tests

Minimum isolation distance requirements for vegetable seed crop

Vegetable	Isolation distance (m)		Vegetable	Isolation distance (m)		
	BS/FS	CS		BS/FS	CS	
French bean	10	5	Peppers	400	200	
Cow pea	10	5	Okra	400	200	
Garden pea	10	5	Brinjal	200	100	
Lettuce	50	25	Tomato	50	25	
Cole crops, Chinese cabbage	1600	1000	Spinach	1600	1000	
Carrot	1000	800	Potato	5	5	
Radish/Turnip	1600	1000	Garlic	5	5	
Onion	1000	500				
Cucurbits	1000	500				

Agronomic principles for seed production

- 1. Selection of suitable areas for seed production
- 2. Selection of variety
- Source of seed
- 4. Seed treatment
- 5. Better agronomic management
- 6. Supplementary pollination
- 7. Harvesting, drying & storage

Labels for various seed classes

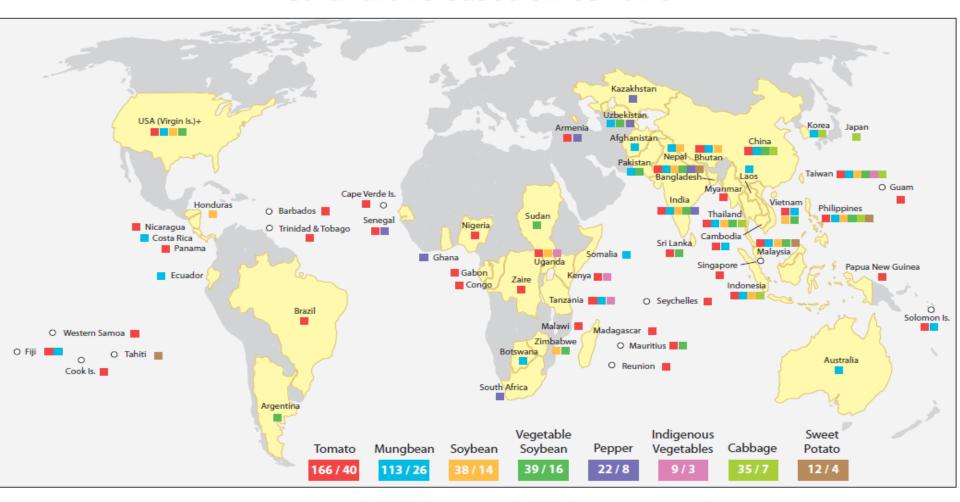
Breeder Seed

Foundation Seed

Certified Seed

AVRDC's genebank

61,494 accessions from


439 species

172 genera

155 countries

Cultivars released since 1978

434 improved vegetable varieties benefit farmers around the world

Current fresh market tomato releases of AVRDC

Current high beta carotene tomato lines of AVRDC

AVTO1017

AVTO1020

AVTO1016

AVTO1019

AVTO1015

AVTO0102

Current hot pepper releases of AVRDC

Current sweet pepper releases of AVRDC

AVPP0402

AVPP9807

AVPP0408

AVPP0701

Soybean releases of AVRDC

AVSB0301

AVSB0805

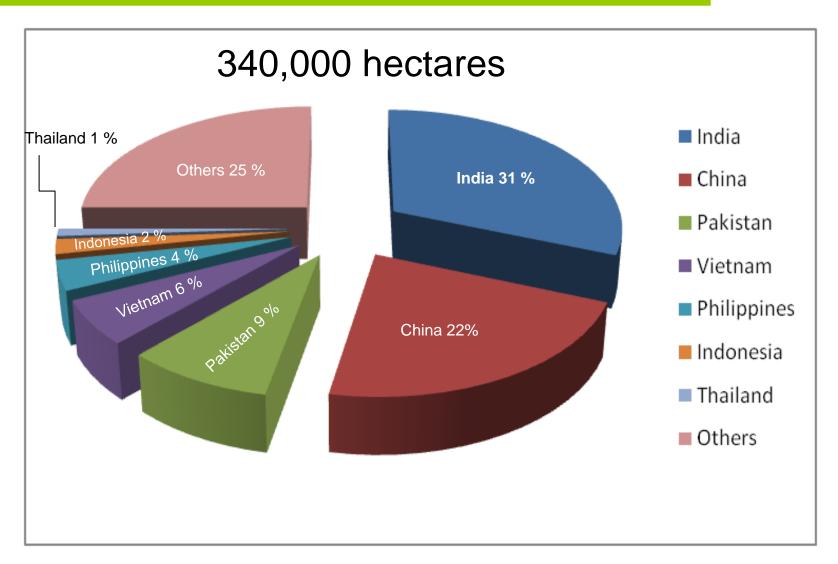
VI060637

AVSB0803

VI060636

AVSB0304

Cucurbit breeding at the World vegetable Center

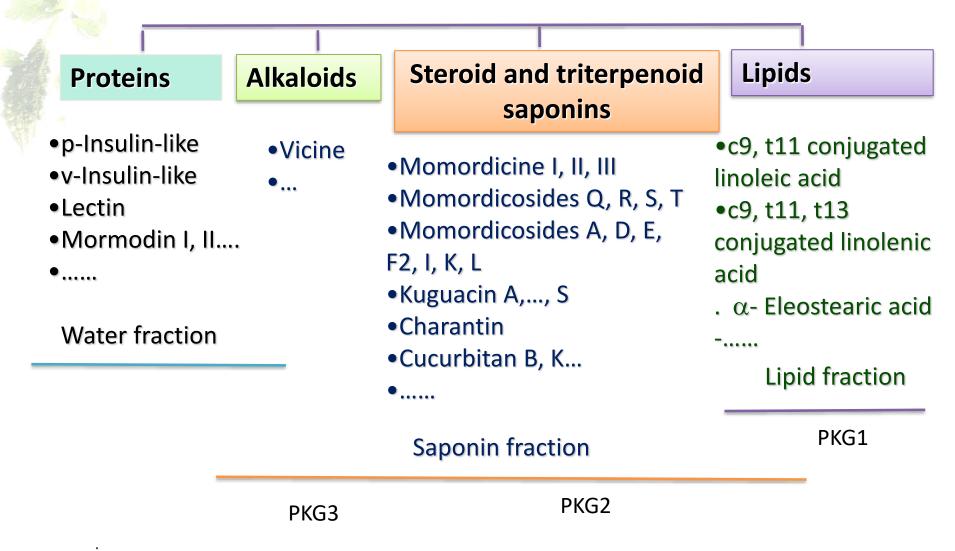

World annual production of cucurbits

Vegetable	World production per annum (million)			
	Tonnes	Hectares		
Watermelon	105.37	3.472		
Cucumbers, Gherkins	65.13	2.109		
Melon, cantaloupe	31.92	1.339		
Pumpkins, squash, gourds	24.61	1.778		
Total cucurbits	227.03	8.698		
Tomatoes	161.79	4.803		
Chilies, peppers, green	31.17	1.914		

Source: FAOSTAT 2015

Bitter gourd cultivation in Asia

Source: EWS


Human Trial in India

Results after 8 weeks of intervention:

- Reduction in body weight, BMI, and waist circumference (P<0.01)
- Reduced mean fasting blood glucose from 110.66 mg/dl to 99.86 mg/dl (P<0.01)
- Reduced HbA1C levels from 6.37 % to 5.53 % (p<0.01)
- Increased insulin level from 9.5 to 10.57μU/dl in those treated with bitter gourd compared to a reduction of 0.33 μU/dl in the placebo treatment
- Reduced triglyceride (P<0.05), total cholesterol (p<0.01) and LDL cholesterol (p<0.01)
- No change in blood pressure

Anti-Hyperglycemic Substances in Bitter Gourd

Bitter gourd statistics and importance

- Nearly 340, 000 ha are devoted to bitter gourd cultivation annually in Asia
- Fruit often used in folk medicine to treat type 2 diabetes
- 60% production area is under OPV in India,
 Bangladesh, Sri Lanka
- Hybrids yield 20-30 t/ha whereas OPVs yield 8-10 t/ha

Genotype	Fruit							
	No./plant	Weight (g)	Yield (t/ha)	Bitterness	Color	Skin		
Medium fruit length segment (South Asian type)								
AVBG1304	41	173	35	L	DG	Spiny		
AVBG1310	23	266	33	L	G	Spiny		
BARI 1 (Check)	22	178	23	Н	DG	Spiny		
Palee (Check)	30	194	36	Ĺ	G	Spiny		
Long	fruit length	segment (S	Southeast As	sian/Chinese	type)			
AVBG1313	19	374	41	М	LG	Ribbed		
AVBG1314	21	350	41	L	LG	Ribbed		
Benteng (Check)	19	407	40	L	LG	Ribbed		
	Small fruit	t length seg	ment (South	Asian type)				
AVBG1323	47	138	32	M	G	Spiny		
AVBG1324	59	115	38	M	G	Spiny		
Noor (Check)	48	134	36	L	MG	Spiny		
LSD (P= 0.05)	9	70	7	Bitter gourd: Trial in Kamphaeng Saen				

Bitter gourd breeding block – Aerial view

WorldVeg's released lines of bitter gourd

AVBG1301

AVBG1323

AVBG1324

AVBG1304

AVBG1313

AVBG1327

AVRDC Seed Shop

Bitter Gourd

Momordica charantia L.

Lines developed at AVRDC - The World Vegetable Center

AVBG1301

Pedigree: 12THBG1-03A6-13

Parentage: Vivek

Adaptation: Hot dry and hot-wet open field

Remarks: Vines vigorous, fruit medium size and green, spindle and spiny

To order seed, please email:

seedrequest@worldveg.org

A handling fee will be charged.

For seed distribution policies, please visit the AVRDC website: www.avrdc.org

AVRDC - The World Vegetable Center

Box 42

Shanhua, Tainan 74199

TAIWAN

Descr	iptors
Bitterness*	М
Fruit color##	MG
Fruit surface	Spiny
Fruit shape	Spindle

[#]S=strong, M=medium, L=low

^{##}G=green, LG=light green, MG=medium green, DG=dark green

Mean quantitative data*				
Number of 1st female flower node	25			
Days after flowering to harvesting	14			
Number of fruit/plant	45			
Fruit length (cm)	18.8			
Fruit width (cm)	4.6			
Fruit weight (g)	125			
Yield (t/ha)	35			
Maturity (DAS)**	59			
Shelf life (day)***	2.3			

^{*}Average quantitative data were measured in August 2013 at AVRDC, East and Southeast Asia, Kamphaeng Saen, Thailand

^{***}DAS: days after sowing to commercial harvest stage

^{****} Shelf life: days before the fruit becomes soft under the shade in the field conditions (day/night= 32-34/26-28 °C, RH=80-85%)

AVRDC Seed Shop

Bitter Gourd

Momordica charantia L.

Lines developed at AVRDC - The World Vegetable Center

AVBG1313

Pedigree: 12THBG4-10A6-19 Parentage: Benteng 545

Adaptation: Hot dry and hot-wet open field

Remarks: Medium fruit size, cylindrical and light green, blunt blossom end

and high yielding

To order seed, please email:

seedrequest@worldveg.org

A handling fee will be charged.

For seed distribution policies, please visit the AVRDC website: www.avrdc.org

AVRDC - The World Vegetable Center

Box 42

Shanhua, Tainan 74199

TAIWAN

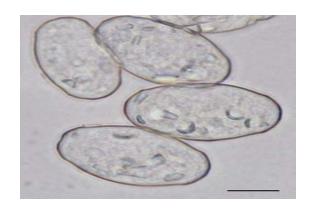
Descriptors				
Bitterness#	Ĺ			
Fruit color##	LG			
Fruit surface	Ribbed			
Fruit shape	Cylindrical			

[#]S=strong, M=medium, L=low

^{##}G=green, LG=light green, MG=medium green, DG=dark green

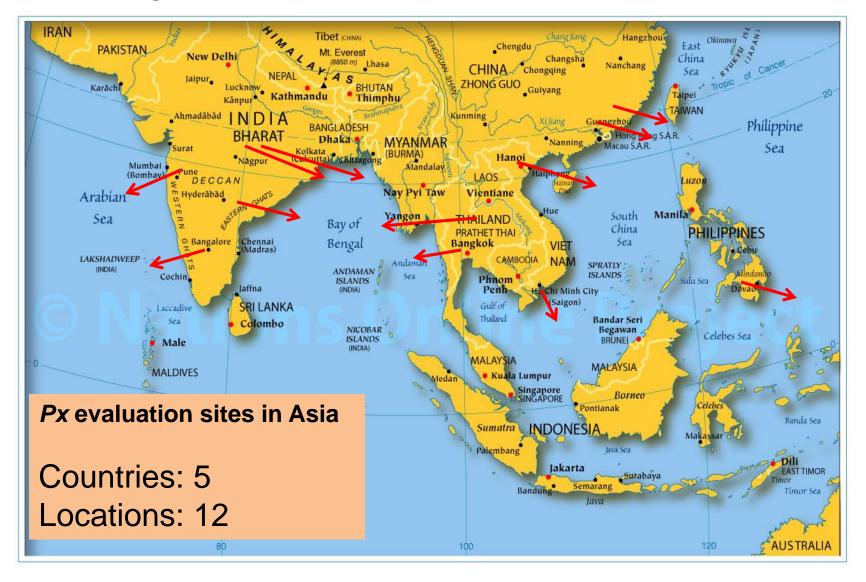
Mean quantitative data*					
Number of 1st female flower node	24				
Days after flowering to harvesting	13				
Number of fruit/plant	19				
Fruit length (cm)	20.5				
Fruit width (cm)	5.6				
Fruit weight (g)	375				
Yield (t/ha)	41.3				
Maturity (DAS)**	59				
Shelf life (day)***	2.1				

^{*}Average quantitative data were measured in August 2013 at AVRDC, East and Southeast Asia, Kamphaeng Saen, Thailand


^{##}DAS: days after sowing to commercial harvest stage

^{***} Shelf life: days before the fruit becomes soft under the shade in the field conditions (day/night= 32-34/26-28 °C, RH=80-85%)

Development of cucurbit powdery mildew resistance bitter gourd lines



Podosphaera xanthii

Bitter gourd Px resistance evaluation across Asia

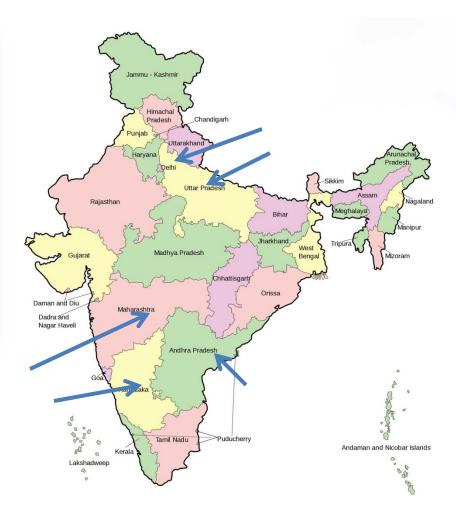
Disease rating of six bitter gourd lines to local isolates of *P. xanthii* (*Px*) at 12 locations in 5 countries

Country	Location	Reaction of Px-resistant breeding lines				Tentative		
		THMC 144	THMC 113	THMC 143	THMC 153	THMC 167	THMC 170	bitter gourd <i>Px</i> race
Thailand	Kamphaeng Saen	S	R	R	R	R	R	Mc-1
	Chiang Mai	S	R	R	R	R	R	Mc-1
Vietnam	Hanoi	S	R	R	R	R	R	Mc-1
	Ho Chi Minh City	S	R	R	R	R	R	Mc-1
Philippines	Bukidnon	S	R	R	R	R	R	Mc-2
India	Bangalore	S	R	R	R	R	S	Mc-2
	Pune	S	R	R	R	R	S	Mc-2
	Hyderabad	S	R	R	R	R	R	Mc-1
	Raipur	S	S	R	R	R	S	Mc-3
	Jagdalpur	S	R	R	R	R	R	Mc-1
China	Qingyuan	S	R	S	R	R	R	Mc-4
	Kaiping City	S	R	R	R	R	R	Mc-1

Scale 0-5

0=0%, 1=1-10%, 2=11-25%, 3=26-50%, 4=51-75%, 5=>75%, **Resistant = 0-1**

Rasi HyVeg Seeds, Bangalore



Multi-location trials of WorldVeg Bitter gourd lines based hybrid

AVBG1601

Performance of WorldVeg Bitter gourd lines based hybrid AVBG1601

Scaling

	Marketable fruit yield (t/ha)				
F1 Hybrid	Delhi	Bangalore	Guntur	Nasik	Varanasi
AVBG1601	42.73	51.31	36.11	34.81	40.02
NBH- ARCHANA	39.17	43.17	32.92	33.95	37.09
PALEE	29.76	36.46	24.49	29.18	31.61
AMANSHRI	32.66	40.26	22.26	29.92	34.31
LSD ($P = 0.05$)	7.63	6.05	9.45	8.75	7.79

Farmer's pumpkin field in Cagyan de Oro

Pumpkin multi-virus resistance breeding at ESEA

Collaboration with KU

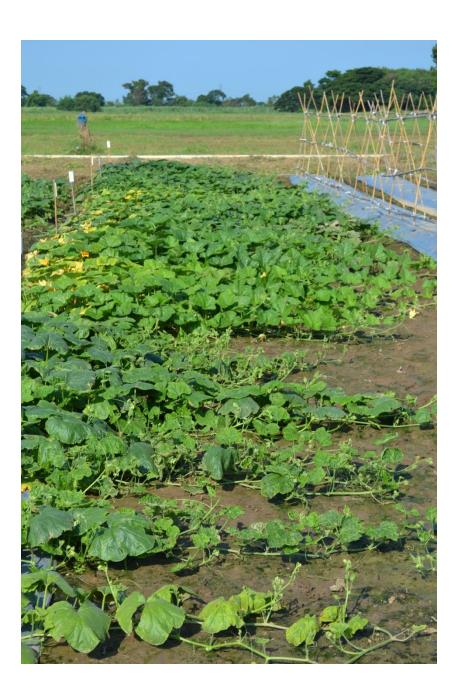
Field design for multiple virus resistance evaluation

S	S	S	S	S	S	S
S	R	S	R	S	R	S
S	R	S	R	S	R	S
S	S	S	S	S	S	S
S	R	S	R	S	R	S
S	R	S	R	S	R	S
S	S	S	S	S	S	S

Field screening for multiple virus resistance

Screening pumpkin lines against SLCuV

	No. of tested plant	No. of infected plant				
WorldVeg code		Week 3	Week 5	Week 7	Week 9	Week 11
THCM 122-1-6-8-7-9-4-2	30	0	1	1	2	3
THCM 120-1-3-2-8-4-8-7	30	0	0	0	0	3
THCM 114-2-2-2-9-7-6-5	30	0	0	0	0	5
THCM 119-2-3-4-10-5-1-8	30	0	0	0	0	0
Suscep. Check-Walthum B	10	10	10	10	10	10


Susceptible

SLCuV

Cucurbit crew at World Vegetable Center

Acknowledgements

Seed companies	Core support			
1. Ajeet Seeds	UK aid			
2. Ankur Seeds	USAID			
3. East-West Seed	ACIAR			
4. Enza Zaden	Republic of China (ROC)			
5. HM Clause	Germany			
6. I & B Seeds	Thailand			
7. JK Agrigenetics	Philippines			
8. Kalash Seeds	Korea			
9. Kaveri Seeds	Japan			
10. KF Bioplants	Project support			
11. Noble Seeds	APSA			
12. Nuziveedu Seeds	BMZ Germany			
13. Rasi HyVeg	MAFF Japan			
14. Sungro Seeds	RDA Korea			
15. VNR Seeds				

Thank you

