35th IVTC – International Vegetable Training Course From Seed to Table and Beyond

5 September – 25 November 2016

Linking Nutrition with Agriculture-Nutrition Values and Interventions from Seed to Table and Beyond


Ray-Yu Yang

Nutritionist, World Vegetable Center, Taiwan ray-yu.yang@worldveg.org

12 October 2016

Outline

- Introduction and objectives of the day (10 min)
- Part 1: Nutrition values from seed to table and beyond
 - Lectures (50 min)
 - Food and nutrition
 - Nutrition values from seed to table and beyond
 - Case studies
 - Group discussion and presentation (120 min)
- Part 2: Nutrition interventions from seed to table and beyond
 - Lectures (60 min):
 - Public health nutrition
 - Linking nutrition with agriculture
 - Case studies
 - Group discussion and presentation (120 min)

Introduction

 Interventions for improved nutrition and health of rural and urban consumers through increased awareness, access and consumption of nutritious, diverse and safe vegetables

• Objectives:

By the end of the day, participants should be able to

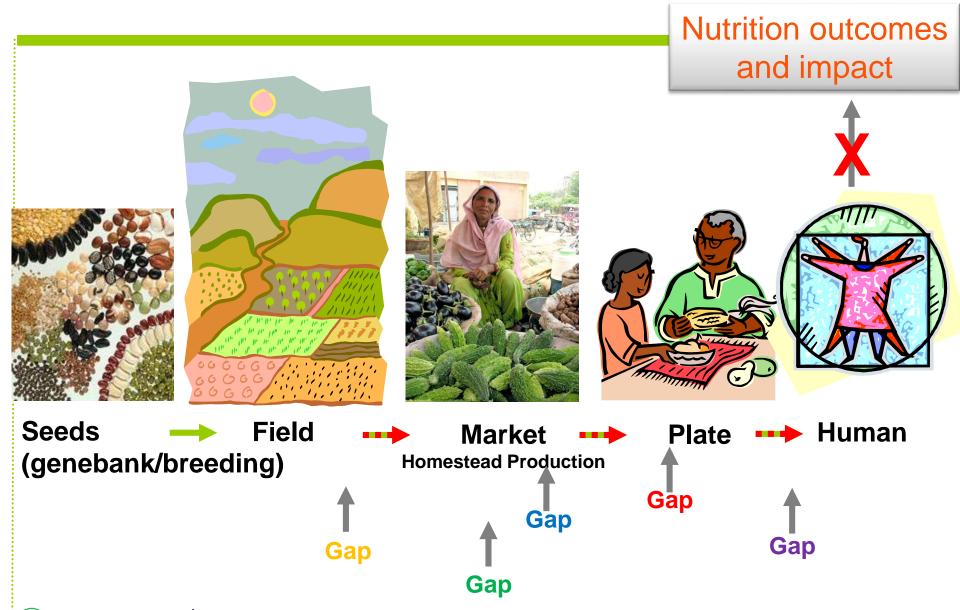
- Describe nutritional traits of vegetables from seed to table
- Consider nutritional traits in vegetable research and development
- Recognize the complexity and conceptual pathway between agriculture and nutrition
- Identify potential interventions, partnership, and indicators for improving nutrition through agriculture

Introduction

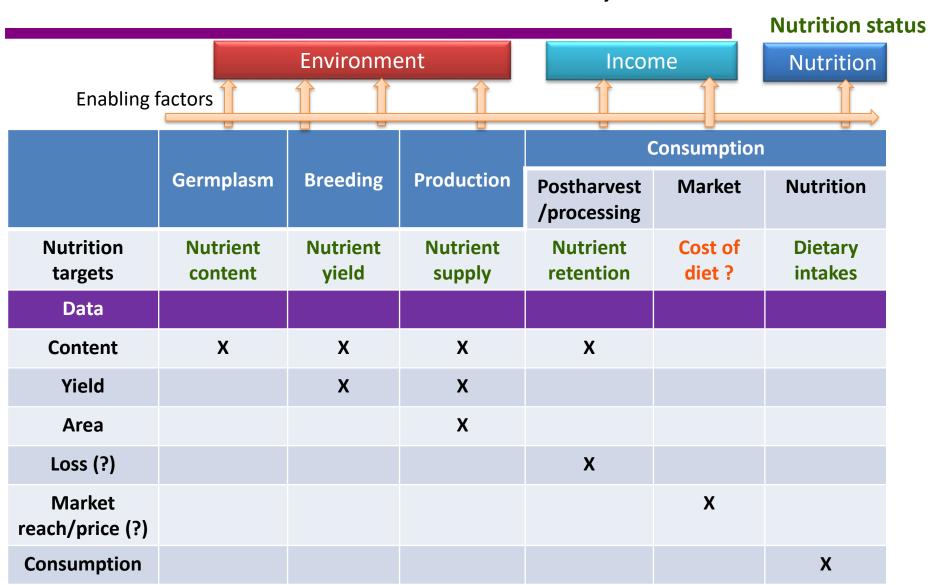
- Group work
 - 4 working groups
 - Topic 1:
 - Improve nutritional values and contributions of vegetables
 - Research topic, problems, objectives, approaches, partnerships, expected results
 - Topic 2:
 - Improve nutritional outcomes of urban/rural consumers through agriculture
 - Project title, problems, objectives, approaches, partnerships, expected results
 - Presentation by group

Part 1: Nutrition values from seed to table and beyond

- Essential nutrients and phytochemicals
- Daily requirement and health benefits
- Nutrient database
- Nutrient values along the food flow
 - Nutrient content
 - Nutrient supply
 - Nutrient cost
 - Nutrient retention
 - Nutrient bioavailability
 - Nutrient intake
 - Nutrient requirement


Part 1: Nutrition values from seed to table and beyond

Discussion:


- Enhance Improve nutritional values of vegetables
 - Research topic, problems, objectives, approaches, partnerships, expected results

Food flow from seed to fork, to human

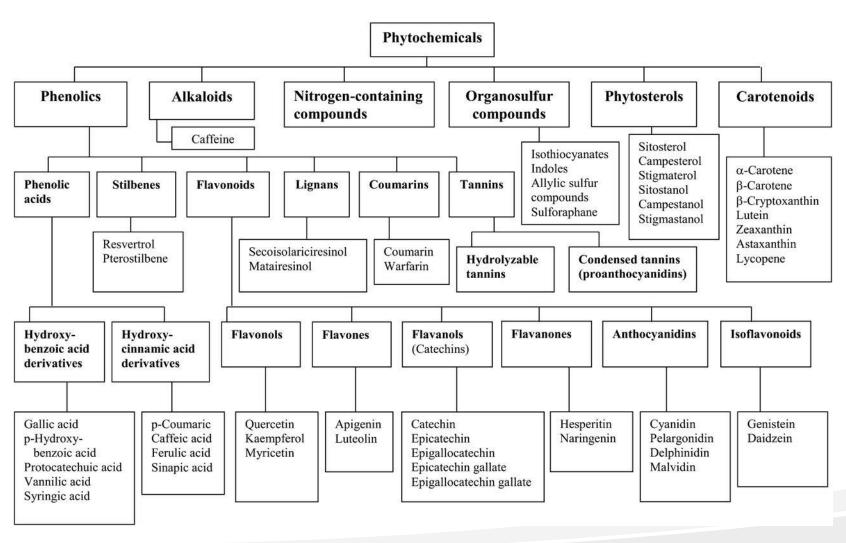
Nutritional values from seed to table, to outcomes

Content

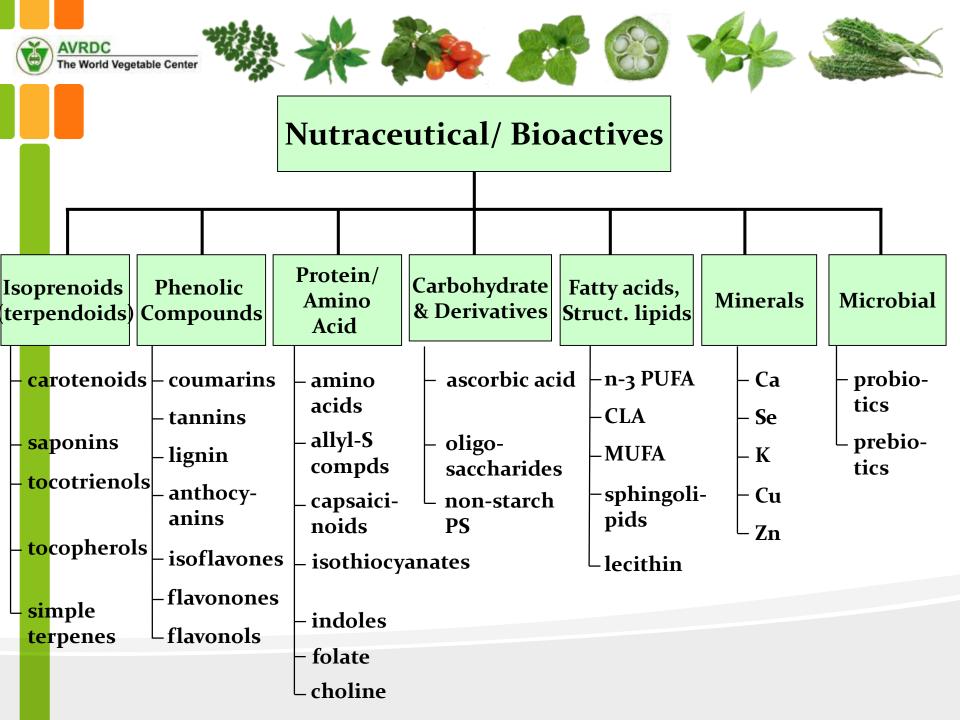
- (I) Importance of vegetables in human nutrition
- Nutrition situation, dietary needs and consumption patterns
- Enhancing nutrient supplies from farm to table
- (II) Essential nutrients and phytochemicals
- Classification, functionalities and health benefits
- Diversity and variation
- (III) Processing and nutrient
- Why processing
- Nutrient loss, retention and enrichment

Essential nutrients and phytochemicals

- Classification
- Functionalities and health benefits
- Diversity and variation



Nutritional Components in Plants


- Macronutrients (generally 90-98% dry wt)
 - Carbohydrates, Lipids, Amino Acids (few thousand compounds)
- Micronutrients (generally 1-10% dry wt)
 - Minerals: 17 essential (Fe, Zn, Ca, Na, Cu, K...)
 - Organics: 13 essential vitamins (A, B, C, D, E, K..)
- Secondary Metabolites
 - Estimated >200,000 in plants!
 - -~80,000 characterized

Classification of dietary phytochemicals.

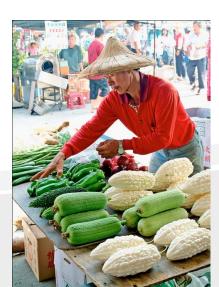
Rui Hai Liu Adv Nutr 2013;4:384S-392S

Examples of Bioactives Grouped by Mechanisms of Action

Anticancer	Influence on blood lipid profile	Anti-oxidation	Anti- inflammatory	Bone protective
Capsaicin	β-Glucan	Ascorbic acid	Linolenic acid	Soy protein
Genestein	MUFA	β-Carotene	EPA	Genestein
Limonene	Quercetin	Polyphenolics	DHA	Daidzein
Diallyl sulfide	ω-3 PUFAs	Tocopherols	Capsaicin	Calcium
α-Tocopherol	Resveratrol	Lycopene	Quercetin	
Ellagic acid		Lutein	Curcumin	
Lutein		Glutathione		
glucosinolates		Chlorogenic acid		

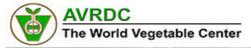
Bitter gourd

A vegetable


- Popular in India, China, the Philippines, Taiwan, and Japan
- Consumed worldwide,
 particularly in Chinese and
 India communities

A medicinal plant

- Anti-hyperglycemia
- Anti-hyperlipidemia
- Anti-oxidation
- Anti-inflammation
- Anti-microbial pathogens



Phytonutrient Databases: examples

Database	Domain	Phytochemicals/	Type of information	Type of database	
		compounds			
PubChem	all	>26 million unique	structures, physical	open access,	
	organisms	chemicals, synthetic and	properties, literature	queryable,	
		natural	links	downloadable	
Dr. Duke's	plants	8500 phytochemicals	occurrence in plants,	open access,	
Phytochemical and			content in plants,	queryable	
Ethnobotanical			biological properties		
Databases					
Dictionary of Food	foods	30,000 natural food	structures,	commercial,	
Compounds		components and food	physicochemical	queryable	
		additives	properties		
USDA Nutrient and	foods	63 fatty acids, vitamins,	content in foods	open access,	
Phytochemical		minerals, carotenoids,		queryable,	
databases		methylxanthines in		downloadable	
		13,000 foods commonly			
		eaten in the U.S.A.			
EuroFIR-BASIS	foods	256 phytochemicals in 199	content in foods,	membership,	
	D . 1	foods ase on food phytochemicals and their	biological properties	queryable	
Scalbert et al., JAFC 2011,	59, 4331: Databa	ase on 100a phytochemicals and their	nealth-promoting effects		

NUTRIENT DATABASE

Home | Search | Reset | Links | About | Guide

African and Asian indigenous vegetables

378 records found (Total records:378) Page 1 of 19 1 2 3 4 5 6 7 8 9 10 ≥

AVRDC Nutrition •

20 records per page

	↑ Common name	Scientific name	Origin	Year	Part
Details		Celosia argentea	Tropical Africa	2004	Young shoots
Details	African eggplant	Solanum macrocapon	Tropical Africa	2002	Fruit
Details	African nightshades	Solanum scabrum	Tropical Africa	2006	Young shoots
Details	African nightshades	Solanum villosum	Tropical Africa	2006	Young shoots
Details	African scarlet eggplant	Solanum aethiopicum	Tropical Africa	2004	Mature fruit
Details	African scarlet eggplant	Solanum aethiopicum	Tropical Africa	2004	Mature fruit
Details	African scarlet eggplant	Solanum aethiopicum	Tropical Africa	2004	Mature fruit
Details	African scarlet eggplant (3)	Solanum aethiopicum	Tropical Africa	2004	Mature fruit
Details	Aibika	Abelmoschus manihot	East Asia	2003	Young shoots
Details	Ailanthus prickly ash	Zanthoxylum ailanthoides	East Asia	2002	Young leaves
Details	Ailanthus prickly ash	Zanthoxylum ailanthoides	East Asia	2004	Young shoots
Details	Aromatic turmeric	Curcuma aromatica	India	2002	Stem
Details	Ashitaba	Angelica keiskei	East Asia	2003	Young leaves
Details	Ashitaba	Angelica keiskei	East Asia	2004	Young shoots

http://avrdcnutrition.gtdtestsite.comoj.com/nutrition/

Laboratory analysis

- Macro-constituents
 - Dry matter
 - Protein
 - Crude fiber
 - Oil (total, n-3 & n-6)
- Micro-constituents
 - Antioxidant vitamins
 - A (carotenoids)
 - C (ascorbate)
 - E (tocopherols)
 - Minerals
 - Ca, Fe, Zn

- Bioactives (selected)
 - Flavonoids
 - Carotenoids
 - Glucosinolates
 - Total phenolics
 - Antioxidant activity

LCMS profiles

Micronutrient contents of commonly consumed and

indigenous vegetable

		1.		NAME OF TAXABLE PARTY.	The state of the s	WA	
	Ranges	Tomato	Cabbage	Moringa	Amaranth	Aibika	Sweet potato leaf
<mark>β</mark> -Carotene,mg	0.0 - 22	0.40	0.00	15.28	9.23	5.11	6.82
Vit C, mg	1.1 - 353	19	22	459	113	82	81
Vit E, mg	0.0 - 71	1.16	0.05	25.25	3.44	4.51	4.69
Iron, mg	0.2 – 26	0.54	0.30	10.09	5.54	1.40	1.88
Folates, μ g	2.8 – 175	5	ND	93	78	177	39
Antioxidant	0.6 -	222	400	2050	204	FCO	070

496

323

2858

394

560

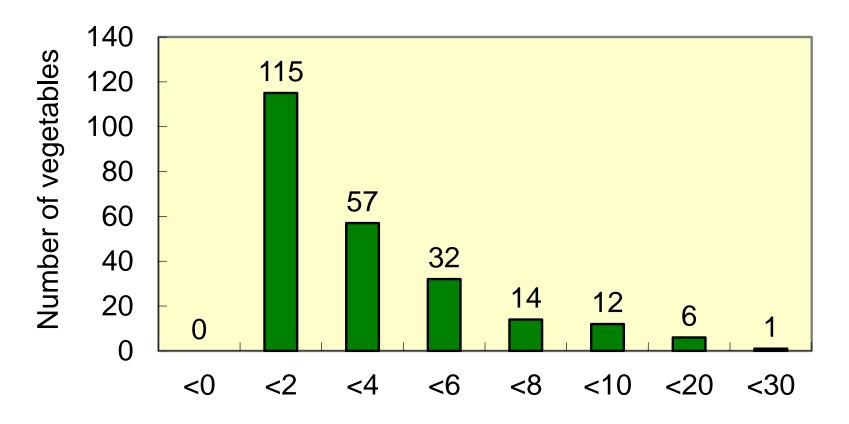
870

Data source: AVRDC Nutrition Lab

activity, TE

Ranges: including >100 vegetable species

82,000

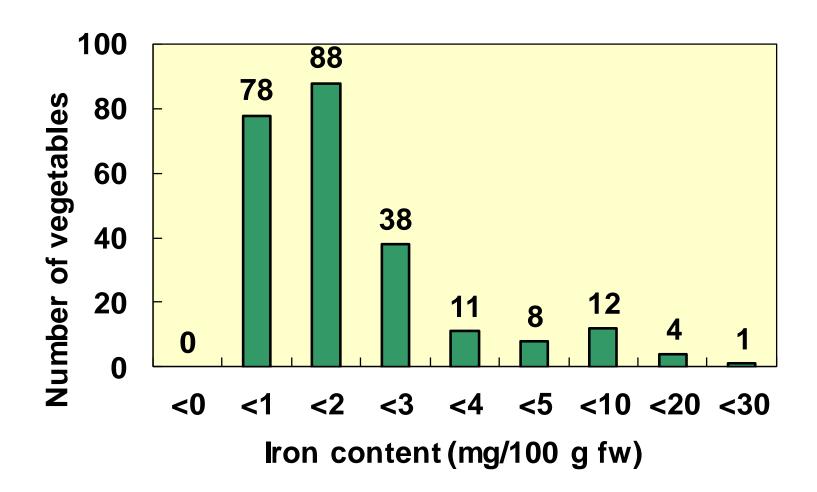


Nutrient content ranges

In 100 g fw	N	Min	Max	Mean	SD
Protein, g	243	0.2	10	3	1.6
β -carotene, mg	241	0.0	22	3.1	3.3
Vit. C, mg	243	1.1	353	70	77
Vit. E, mg	243	0.0	71	2.6	5.6
Folates, μg	90	2.8	175	51	40
Ca, mg	243	2	744	121	136
Fe, mg	243	0.2	26	2.1	2.6
Zn, mg	27	0.17	1.24	0.49	0.24
Total phenol, mg	241	17	12,070	444	940
AOA, TE	243	0.63	82,170	1383	5648

Specie no.: ~120

Vegetable germplasm distribution for β-carotene content

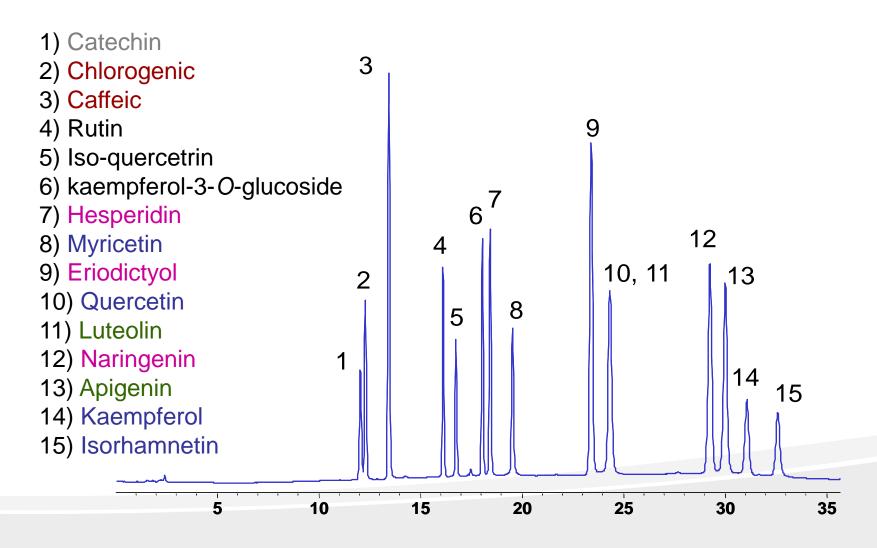


β- Carotene, mg/100 g fw

130 vegetable species

Vegetable germplasm distribution for iron content

130 vegetable species



HPLC chromatography of standard mixtures

Flavonoid content ranges of underutilized vegetables

	Isorhamnetin	Kaempferol	Quercetin	Apigenin	Luteolin	Total
> 0.5	mg / 100g					
Max	9	111	224	72	95	256
Mean	2	15	27	12	23	47
SD	2	21	42	24	27	52
n	20	57	59	8	13	95
< 0.5	mg / 100g					
n	95	58	56	107	102	20

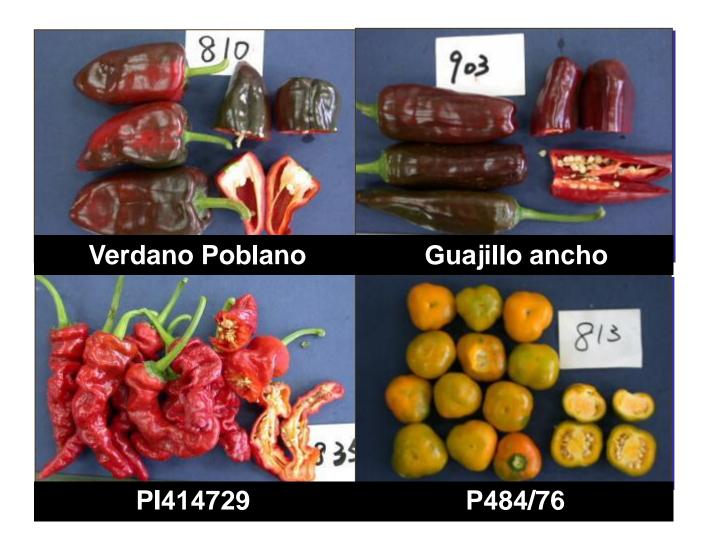
Total flavonoids

明日葉 Ashitaba *Angelica keiskei* (256 mg/100g) 海巴戟 Indian mulberry *Morinda citrifolia* (254 mg/100g) 長蒴黃麻 Jute mallow *Corchorus olitorius* (164 mg/100g)

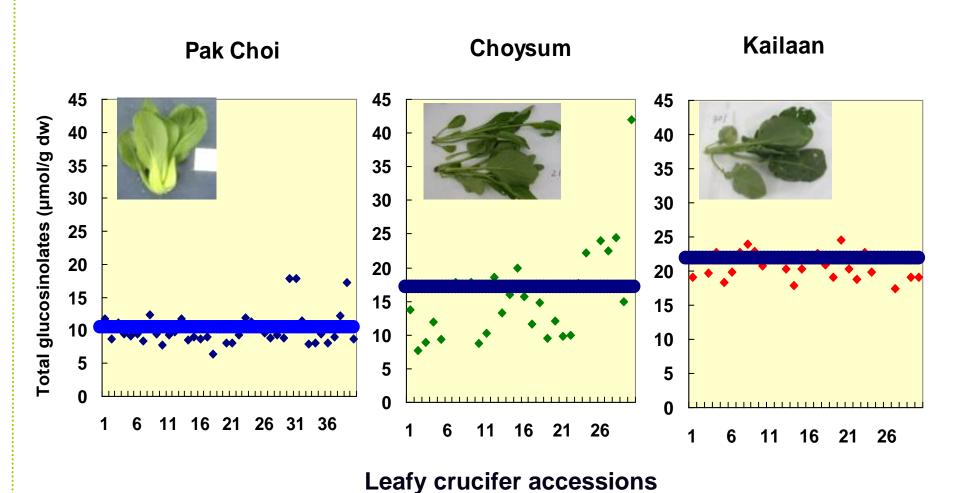
Evaluation of germplasm for breeding materials

High beta-carotene, high lycopene tomato

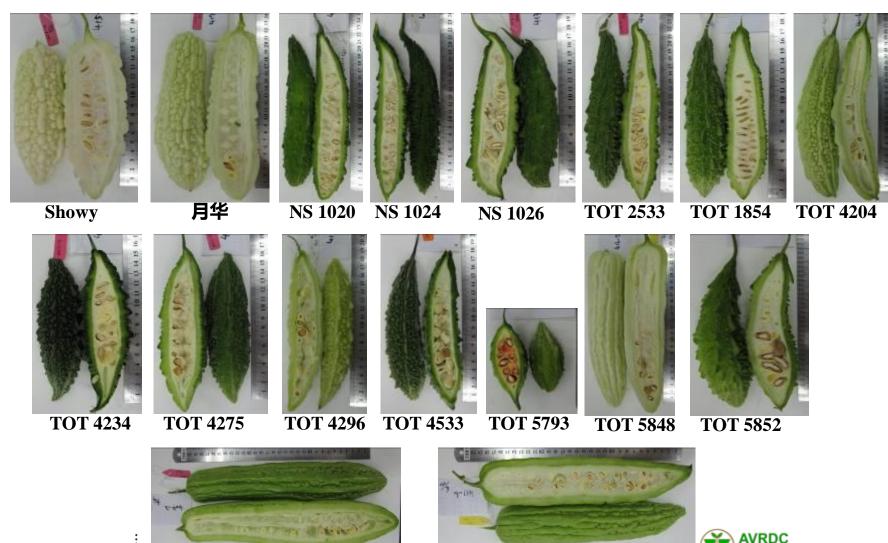
- AVRDC high beta-carotene tomato lines in fresh market and cherry market types
- Orange color a challenge for consumer acceptance
- Piggybag with diseases resistant and heat tolerant genes


High beta-fresh, tropical type

High lycopene, disease resistant, heat tolerant, fresh typeavenc


he World Vegetable Center

High antioxidant Capsicum accessions



Variation for total glucosinolates in leafy crucifer germplasm

Bitter gourd accesions to be evaluated for vitamins and antidiabetic properties

Slide 31 (11/2010)

Best 165 F1

Jade Dragon

Seasonal effects on nutritional values of mature moringa leaves

100 g FW	June (summer) January (winter)				April (spring)					
Mature leaves										
Dry matter, g	23.8	± 0.9 a	21.4	±	0.7.b	21.4	± 1.5 b			
Protein, g	7.59 :	± 0.35 a	6.59	±	0.30 b	6.46	± 0.89 b			
Fiber, g	1.83	± 0.16 b	1.93	±	0.13 a	1.47	± 0.11 c			
Sugars, g	3.17	± 0.41 a	3.04	±	0.22 a	2.59	± 0.44 b			
Calcium, mg	434	± 66 b	448	±	48 b	481	± 67 a			
Iron, mg	6.24	± 0.84 b	9.73	±	1.00 a	4.10	± 2.35 c			
β-carotene	20.1	± 1.8 a	7.8	±	0.7 c	13.8	± 0.9 b			
Vitamin C	244	± 18 b	320	±	28 a	206	± 21 c			
Vitamin E	18.1	± 3.6 a	17.4	±	2.6 a	14.8	± 2.3 b			
AOA, μmol ΤΕ	4380	± 862 a	2341	±	205 b	4166	± 1211 a			
Phenolics, mg	558 :	± 70 c	802	±	54 a	681	± 51 b			

Based on 100 g fresh weight

Seaesonal effects on nutritional values of moringa young shoots

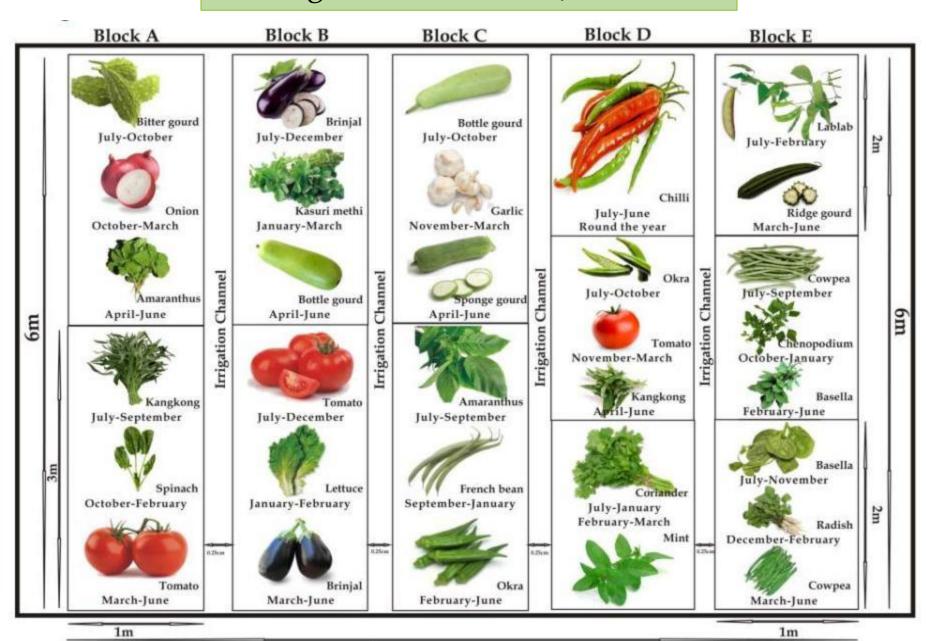
Components.	June (summer)			Janua	January (winter)			April (spring)			
	Young shoots										
Dry matter, g	17.7	±	1.5 a	15.4	±	1.7 b	12.2	±	1.1 c		
Protein, g	5.33	±	0.46 a	4.03	±	0.57 b	3.48	±	0.35 c		
Fiber, g	1.59	±	0.13 a	1.39	±	0.16 b	1.43	±	0.17 b		
Sugars, g	2.52	±	0.34 a	2.19	±	0.28 b	1.88	±	0.34 c		
Calcium, mg	88	±	20	84	±	49	74	±	9		
Iron, mg	2.86	±	1.08 b	4.22	±	1.36 a	1.40	±	0.34 c		
β-carotene, mg	6.96	±	1.15 a	2.75	±	1.00 b	2.56	±	0.58 b		
Vitamin C, mg	256	±	25 b	294	±	35 a	183	±	21 c		
Vitamin E, mg	6.09	±	1.76 a	4.08	±	1.60 b	2.86	±	0.45 c		
TEAC, μmol TE	3381	±	449 a	2223	±	381 b	1307	±	219 с		
Phenolics, mg	552	±	68 b	731	±	100 a	461	±	40 c		

Effects of variety, leaf type and season on phytonutrient contents

- Variation among 10 M. oleifera accessions for nutrient contents was small
 - Breeding for higher nutrient content not worthwhile.
 - Varietal selection should focus on horticultural traits.
- Mature leaves vs young shoots
 - Mature leaves more nutritious than young shoots (1-5X difference)
 - Mature leaves could be quickly dried with minimum nutrient loss;
 - Young shoots have better eating quality

Effects of variety, leaf type and season on nutrient and phytochemical contents (continued)

- Seasonal effects
 - 1.5 3X content variation for vitamin A, iron and antioxidants;
 - Higher protein, fiber, vitamin A and E in hot-wet season
 - Higher iron and vitamin C in cool-dry season


Mild-heat drying maintained most nutrients in moringa leaves

			_
Phytonutrent	Freeze	50°C	Nutrient
- Hytonatient	dry	dry	retention
Protein, g	28	28	
Fiber, g	8	8	3.94
β-Carotene, mg	154	110	71%
Vitamin C, mg	582	157	30%
Tocopherols, mg	169	165	98%
Calcium, mg	1760	1670	95%
Iron, mg	20	21	100%
Glucosinolates, mol	8.6	9.9	
AOA, mmol TE	15.4	17.3	

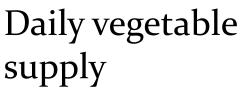
Based on 100 g dry weight

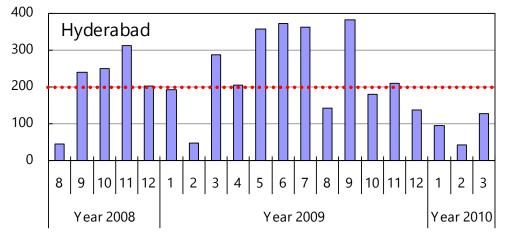
Home garden model for Jharkhand

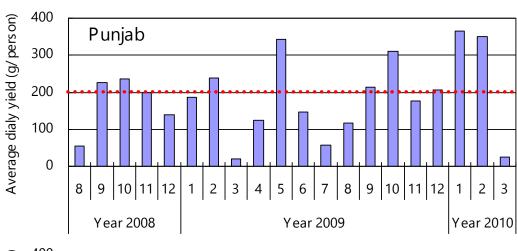
6m

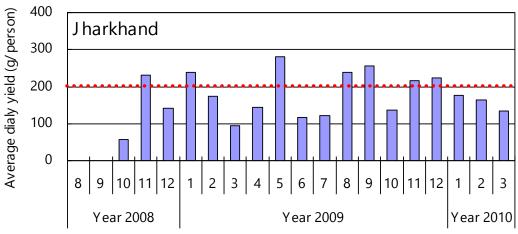
Home garden design for Jharkhand at AVRDC

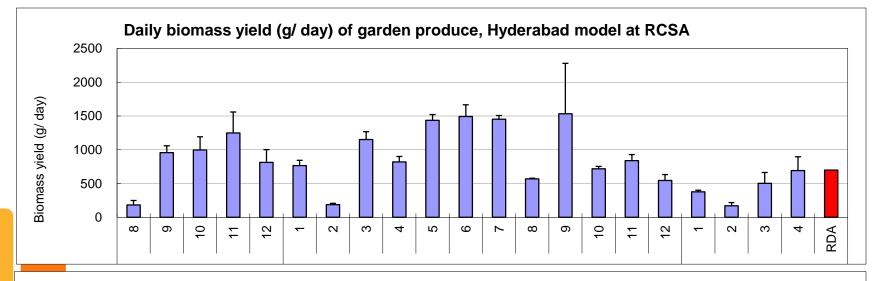
Home garden demonstration at AVRDC, Hyderabad, India

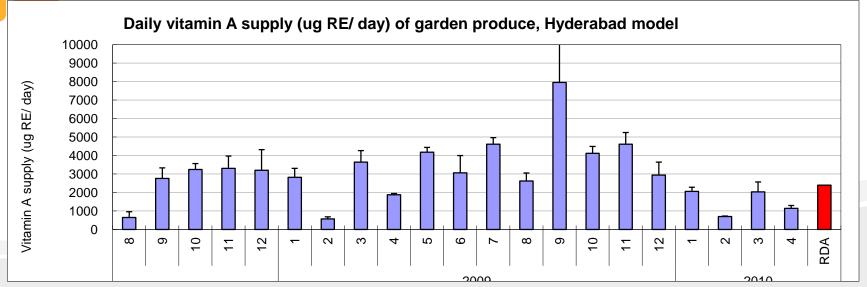







Average dialy yield (g/person)


- Average daily yield of vegetables harvested August 2008 - March 2010 from home garden models designed for Hyderabad, Punjab and Jharkhand.
- The line at 200 g/ person indicates recommended daily consumption level.



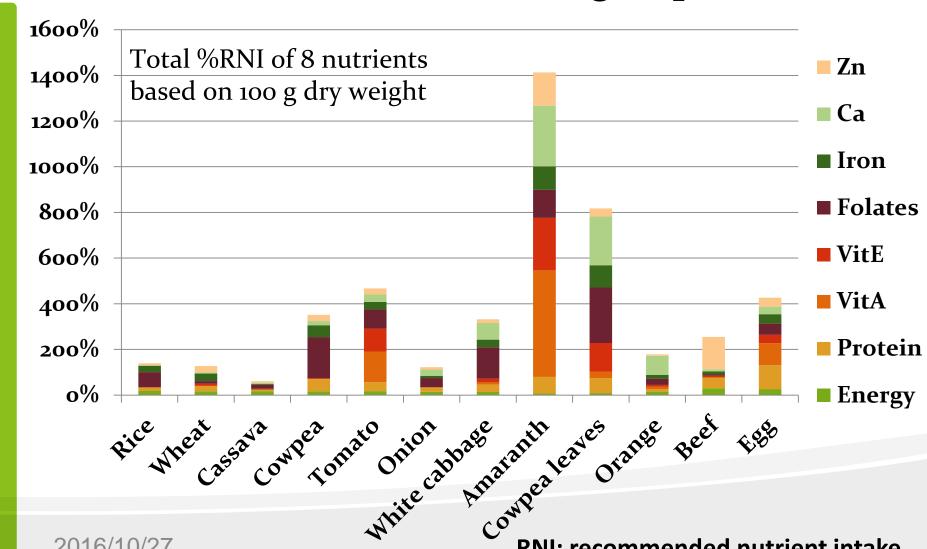
Daily vegetable supply vs daily vitamin A supply (per person/day)

Weekly harvest data: provided by Easdown et al., SRTT project

Daily vegetable and nutrient availability of garden produce harvested from 6x6 m² home gardens

Nutrient	RDA*	Andhra Pradesh	Punjab	Jharkhand
		%	RDA	
Vegetables, g/d	750	111	60	72
Energy, kcal/d	8980	3	2	2
Protein, g/d	196	10	8	7
Vitamin A, ug RE/d	2400	123	93	69
Vitamin C, mg/d	160	239	95	127
Folate, ug DFE/d	670	118	65	56
Iron, mg/d	81	16	9	9
Zinc, mg/d	41	12	6	9

- RDA: Values were the sum of RDA of 4 household members including one adult male and one adult female both with moderate physical work, one 7-9 year old child, and one 14-15 year-old girl. RDA data source: NIN (2010)
- Weekly harvest data provided by Easdown et al., SRTT project



Nutrient values of food groups

2016/10/27

RNI: recommended nutrient intake

- Why processing
- Nutrient loss, retention and enrichment

Why are foods processed?

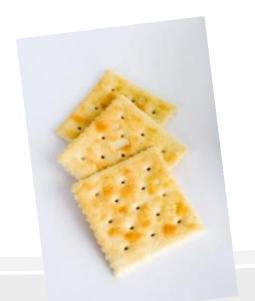
Preservation

- Make them safer by killing existing bacteria and slowing bacterial growth.
- Methods: fermenting; salting; canning; pasteurising; freezing and drying.

Why are foods processed?

Convenience and available year round

 Consumer demand and lifestyle choices has led to the development of a wide variety of convenience and fast food.



Dietary need and health

- Health concerns within the population has led to an increased demand for healthier food choices, e.g. lower salt, fat and/or sugar
- Nutrient fortification, functional food

Why are foods processed?

Variety

- Processing foods provides the consumer with a wider choice.
- Processing can modify the food's:
- flavour
- texture
- smell;
- colour;
- shape.

Early methods of processing and preservation

Using chemicals

- Pickling in vinegar
- Salting
- Sugar to make jam;
- Storing in alcohol
- Fermentation

Temperature control and drying

- Cooking
- Sun drying
- Using ice blocks

Advances in food technology

- Some early methods of food processing and preservation are still used today.
- New technologies
 - Greater range of methods to package and store foods
 - Preservation and enhancement of nutrient values
 - Extension of food product shelf-life.
 - Greater variety and food choice

Effects of processing on nutritional values

Preparation of vegetables

 Most vegetables are peeled or trimmed before cooking to remove the tough skin or outer leaves. But most nutrients, such as vitamins, tend to lie close to the skin surface, so excessive trimming can mean a huge reduction in a vegetable's nutrient value

Food Preservation

- All of the food preservation processes work by slowing down the activity and growth of disease causing bacteria, or by killing the bacteria all together. They also slow down or stop the action of enzymes which can degrade the quality of the food.
 - Temperature

Water Activity

-pH

Effect of processing on nutritional values

In general:

- **Many vitamins** are sensitive and are easily destroyed when exposed to heat, air, water, or fats (cooking oils). With the exception of vitamin K and the B vitamin niacin, which are very stable in food,
- Most minerals are unaffected by heat. Cooked or raw, food has the same amount of calcium, phosphorus, magnesium, iron, zinc, iodine, selenium, copper, manganese, chromium, and sodium. Potassium, may escapes from foods into the cooking liquid.

Stable/ unstable vitamins

- Some vitamins are more stable (less affected by processing) than others. Water-soluble vitamins (B-group and C) are more unstable than fat-soluble vitamins (K, A, D and E) during food processing and storage.
- The most unstable vitamins include:
 - Folate, thiamine, vitamin C
- Vitamin A, E: sensitive to heat, pH, oxygen and light
- More stable vitamins include:
 - niacin (vitamin B₃), vitamin K, vitamin D, biotin (vitamin B₇), pantothenic acid (vitamin B₅).

What Takes Nutrients Out of Food?

Nutrient	Heat	Air	Water	Fat
Vitamin A	X			X
Vitamin D				X
Vitamin E	X	X		X
Vitamin C	X	X	X	
Thiamin	X		X	
Riboflavin			X	
Vitamin B6	X	X	X	
Folate	X	X		
Vitamin B12	X		X	
Biotin			X	
Pantothenic acid	X			
Potassium			X	

Processes affecting food nutrient content

- Milling
 - Ground to remove the fibrous husks
 - Loss of dietary fibre, B-group vitamins, phytochemicals and some minerals.
- Blanching
 - Heated very quickly with steam or water before canned or frozen
 - Loss water-soluble vitamins
- Canning
 - Severe heat treatment to kill any dangerous microorganisms and extend the food's shelf life.
 - Affect the taste and texture; loss of vitamins significantly

Processes affecting food nutrient content

- Freezing
 - Nutrient value retained when it is frozen
 - Nutrient losses due to the processing prior to freezing and the cooking once the frozen food is thawed
- Pasteurization
 - High temperature, short time treatment to destroy micro-organisms
 - Loss of some vitamins
- High pressure processing
 - Low temperature, high pressure to kill microorganisms.
 - Less impact on the vitamin content, flavor and color

Processes affecting food nutrient content

- Dehydrating
 - Loss of nutrients depending on temperature and drying time
 - -Concentration of nutrients
 - More energy dense

Cooking

- Loss of nutrients depending on cooking time: vitamins B and C
- Benefits of cooking
 - making the food tastier
 - breaking down parts of vegetables that would otherwise be indigestible
 - destroying bacteria or other harmful microorganisms
 - making phytochemicals more available, for instance, phytochemicals are more available in cooked tomatoes than in raw tomatoes

•

Cumulative losses in vitamin C

Table 2. Cumulative losses in vitamin C due to fresh storage or processing and storage, followed by home cooking in all cases. Adapted from Rickman et al. (2007a).

	Initial concentration	Initial concentration Refrigerated storage time		r cooking (% wet		
Vegetable	before processi		Fresh	Frozen	Canned	Reference
Broccoli ^a	1.23	21	5	35 ^b	-	Howard et al. (1999)
PLOCCOII.	1.80	21	38	62 ^b	-	Howard et al. (1999)
Causatai	0.043	7	42	12 ^b	81 ^b	Howard et al. (1999)
Carrots ^a	0.039	7	+50°	56 ^b	95⁵	Howard et al. (1999)
Cuan bassa	0.152	21	37	20 ^b	-	Howard et al. (1999)
Green beans	0.163 ^d	0	23	48e	68e	Weits et al. (1970)
Cucan mana	0.40 ^d	0	28	66e	77 ^e	Weits et al. (1970)
Green peas	0.354	1-2	61	70 ^f	85 ^f	Fellers and Stepat (1935)
Spinach	0.28 ^d	0	64	81 ^e	67°	Weits et al. (1970)

^aAuthors repeated analysis in two consecutive years, results indicated separately.

^bStored for 12 mo prior to cooking.

^cAuthors reported increase in vitamin C with fresh storage.

^dAuthors did not provide values. Values taken from USDA (2005).

^eStored for 6 mo prior to cooking.

^fAuthors did not indicate storage time before cooking.

Effect of blanching and freezing on the retention (%) of fiber, phenolics compounds and minerals in different vegetables

Sample	Soluble fiber	Insoluble fiber	Total dietary fiber	Pentosans	Pectins	Total Phenolics
Peas ^a	149	106	107	108	84	79
Carrots ^b	115	125	120	134	130	92
Cauliflower	113	109	110	98	100	87
Cabbage	154	118	125	125	143	126
Spinach	88	112	108	133	123	-
Potato	83	111	97	116	190	71

Source: Puupponen-Pimiä et al. (2003).

Effect of blanching treatment on the vitamin content of a variety of vegetables and leafy greens

Product	Nutrient	Blanching process ^a	Loss (%)
Peas	Ascorbic Acid	W, 3 min/93°C	33
		W, 6 min/93°C	46
		W, 9 min/93°C	58
	Riboflavin	W, 3 min/93°C	30
		W, 6 min/93°C	30
		W, 9 min/93°C	50
	Thiamin	W, 3 min/93°C	16
		W, 6 min/93°C	16
		W, 9 min/93°C	34
	Carotene	W, 3 min/93°C	2
		W, 6 min/93°C	0
		W, 9 min/93°C	0
Lima beans	Niacin	W, 2 min/93°C	32
		W, 4 min/93°C	32
		W, 6 min/93°C	37

Effect of blanching and freezing on the retention (%) of fiber, phenolics compounds and minerals in different vegetables

Sample									
	Ca	Mg	K	P	Na	Cu	Mn	Fe	Zn
Peasa	114	97	80	94	130	83	102	102	93
Carrots ^b	119	110	98	106	88	92	146	101	96
Cauliflowe	er 100	89	84	87	87	115	75	94	70
Cabbage	-	-	-	-	-	-	-	-	-
Spinach	109	73	64	87	60	100	76	105	112
Potato	75	91	84	90	ND	92	95	97	176

Food processing: functional foods

- Preservation vs. enrichment of nutritional values
- Functional foods deliver additional or enhanced benefits over and above their basic nutritional value. It covers a wide range of products.

For example:

- dairy products containing probiotic bacteria;
- everyday foods fortified with a nutrient that would not usually be present e.g. folic acid fortified bread or breakfast cereals.

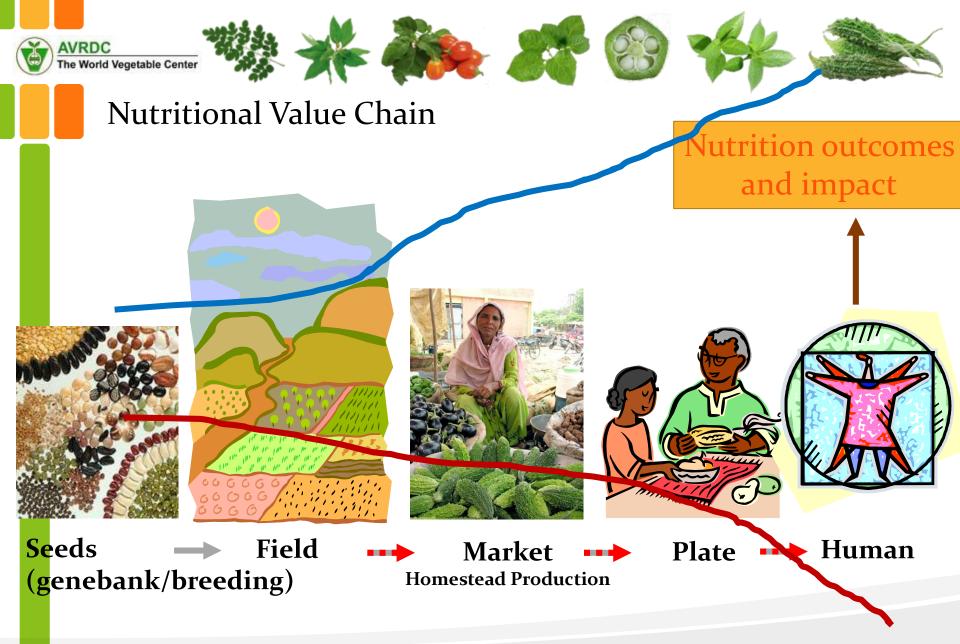
Food processing to enhance nutrient values

- Micro-encapsulation coats small particles such as B vitamins, vitamin C, iron, omega-3 fatty acids with a thin, tasteless, edible film masking any bitter taste and off odour. Products are enhanced without changing the desired flavour.
- High Pressure Processing is a cold pasteurisation technique. Food, previously sealed in flexible and water-resistant packaging, is subjected to a high level of hydrostatic pressure (pressure transmitted by water) for a few seconds to a few minutes.

Effect of minimum processing on nutritional values

	Vit C	T/F	Vit A	Vit E	Minerals	Phytochem
Washed						
Peeled	+	+	+	+		+
Sliced	+	+				+
Juiced	+	+	+	+		+
Frozen	+	+				
Oven dried	++	++	+	+		++
Sun dried	+++	+++	+++	+++		+++

T/F: thiamin and folate



Effects of More highly processing on nutritional values

	Vit C	T/F	Vit A	Vit E	Minerals	Phyto- chem
Baked	++	+	++	++		++
Fried	++	++	+	+		
Pickled	+++	+++	+++	+++	+	+++
Salted	+++	+++	+++	+++	+	+++
Fermented	+++	+++	+++	+++	+	+++
Pasteurized	+++	+++	++	++		++
HPP	+	+				
Fortification	+++	+++	+++	+++	+++	+++

T/F: thiamin and folate

Bioavailability

- Definition
- Measurement
- Extrinsic and intrinsic factors
- Anti-nutrient factors

Nutritional Definition

Bioavailability is a postabsorption assessment of how much of a nutrient that has been absorbed becomes functional to the system

Bioavailability in toto

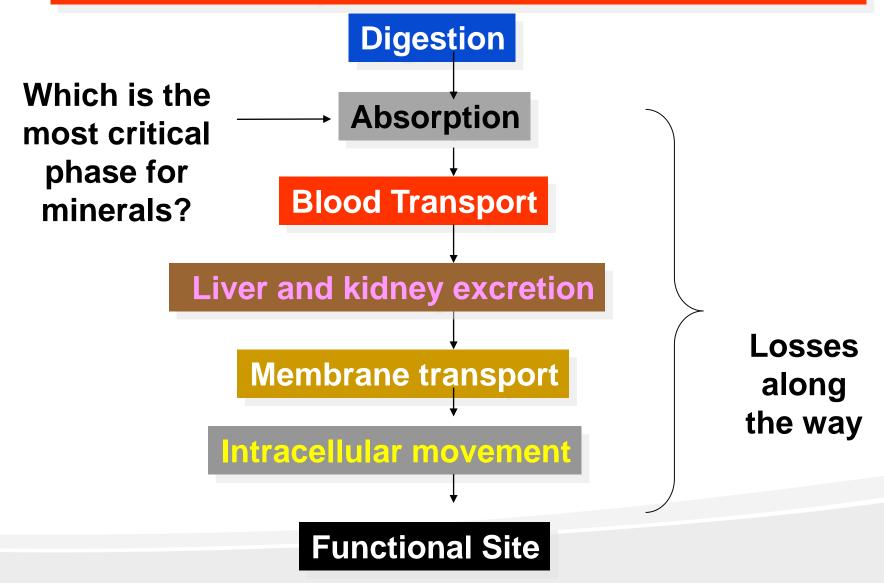
Raw Food Product (100%)

Total (proximate analysis)

Processed Food

Chemically available

Digestion


Absorption

Cellular uptake

Functional mineral

Biologically available

The fraction of the total amount absorbed that performs a function

The amount that gets absorbed depends on:

Extrinsic Factors

Digestibility of the food source
Solubility of the mineral
Elements in the food source that hinder or
facilitate absorption

With a focus on the organism, bioavailability depends on:

Intrinsic Factors

Age
Health
Nutritional state
Physiological state
Genetic predisposition
Gender
Developmental stage
Species

Types	Biological Function of Flavonoids	Anti-Nutritional	In pants
Phytate	 Anti-cancer of phytic acid Reduce blood glucose and possesses health benefits 	Excessive amounts of phytic acid in the diet will form insoluble complexes with multi-charged metals such as Ca ²⁺ / Cu ²⁺ /Fe ³⁺ /Zn ²⁺	Nuts, Seeds, and Grains
Oxalate	 Chelate many toxic metals such as mercury and lead 	Oxalic acid combines with divalent metallic cations such as Ca2+ / Fe2+ to become crystal	Leafy vegetable s

	111 E1V1116 3436C111							
Types	Biological Function of Flavonoids	Anti-Nutritional	In pants					
Tannins	 Antiviral, antibacterial antiparasitic effects Inhibit HIV replication selectivity Ripening of fruit and aging of wine. 	 Intake: reduce intake of forage legumes by deceasing palatability or by negatively affecting digestion. Growth: rate of gain for growing animals reflects total intake and availability of nutrients in the diet. Digestion of fiber fraction: reduce cell wall digestibility 	Tea, wine, Legumes(r ed-colored bean)					
Phenols	 Antitumour, antiviral, antimicrobial activities, hypotensive effects, anti-oxidant 	Respiratory and cardiovascular effect Reduced mineral absorption	Herbs, spices, nuts, vegetables					

Types of Phytochem icals	Biological Function of Flavonoids	Anti-Nutritional	In pants
Cardiac Glycosides	 Found as secondary metabolites in several plants Inhibiting the Na⁺/K⁺ pump 	Highly toxic effect on the vertebrate heart	Ouabain, Digoxin
Alkaloids	 Available in leaves, bark, roots or seeds of plants with diverse biological functions Stimulate the nervous system 	High level of alkaloid exerts toxicity and adverse effects of humans, especially in physiological and neurological activities	Solanacea and many others

Slide 76

Types of Phytochem icals	Biological Function of Flavonoids	Anti-Nutritional	In pants
Hemaggluti nin (Lectin)	 Agglutinate certain animal cells and/ or precipitate in a part of glycoprotein or glycolipid 	Adverse effects may include nutritional deficiencies and immune (allergic) reactions	Legumes, cereal grains, seed nuts, potatoes
Saponins	 Biological benefits: anti-inflammatory, anti-diabetic, anti-HIV, anti-atherosclerotic Protective function: gastro-protective, hepatoprotective and hypolipidemic 	 Dietary saponins are highly toxic to cold-blooded animals. Reduce nutrient utilization and conversion efficiency in ruminants 	Vascular plants

Part 1: Nutrition values from seed to table and beyond

• Discussion:

- Increase nutritional values of vegetables
 - Research topic, problems, objectives, approaches, partnerships, expected results

Break!!

