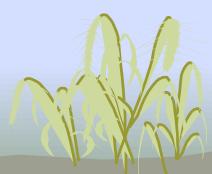
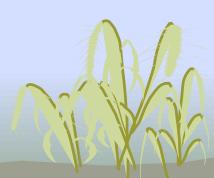
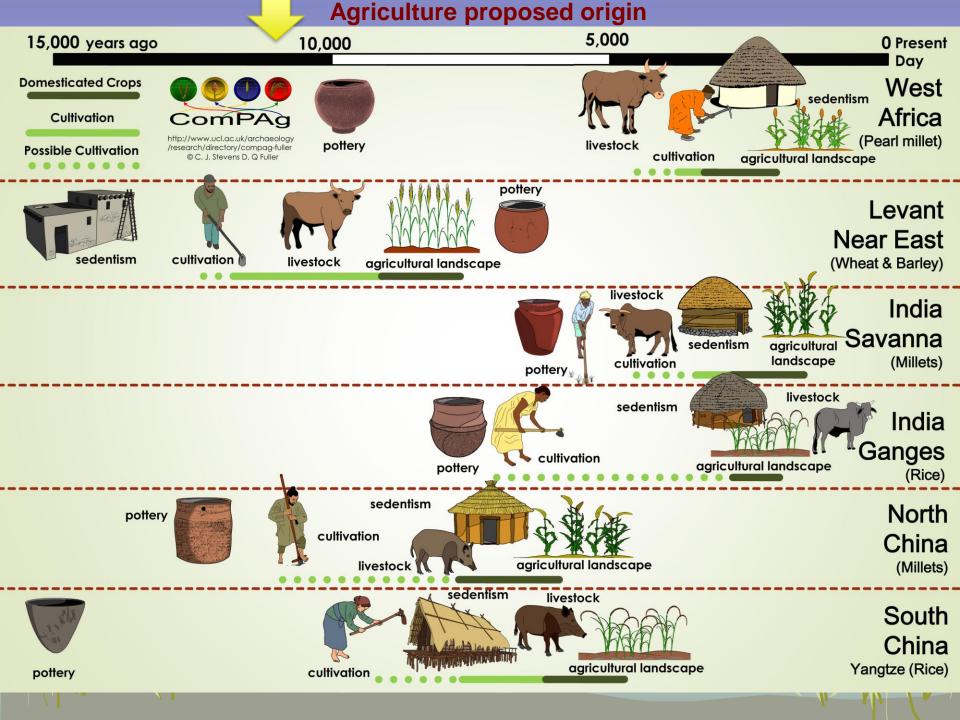
Biotechnology and its applications for fruit and vegetable products


FIGNAL OFINTER FOR GENETIC ENGINEERING AND BIOTECHNOLOGY (BIOTEC) THAILAND

Outline

INTRODUCTION BIOTECHNOLOGY CONCLUSION &DISCUSSION





HISTORY OF AGRICULTURE AND BIOTECHNOLOGY

- Eight "founder crops of agriculture"
- Emmer wheat, einkorn wheat, barley, peas, lentils, better vetch, chickpeas, flax

ncyclopedia.org/entry/History of agriculture

better vetch

Chickpea

Early on human civilization....

- Stay in one place
- More people (from hunting periods)
- Living in community and development of trade requires technologies to process extra agricultural products

Early biotechnology

- Based on natural microorganisms (such as yeast) or biomolecules
- Require fermentation/incubation period
- Basic equipment/tool
- Local consumption and export

IMAGE: Model bakery from the tomb of Meketre, chancellor to Mentuhotep II and III. From the collection of the Metropolitan Museum of Art, New ork (Egypt, ~1975 B.C., plastered an painted wood, height of

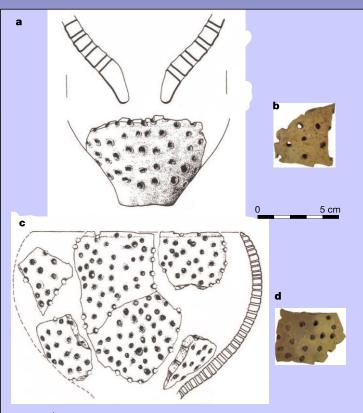
<u>18cm).</u>

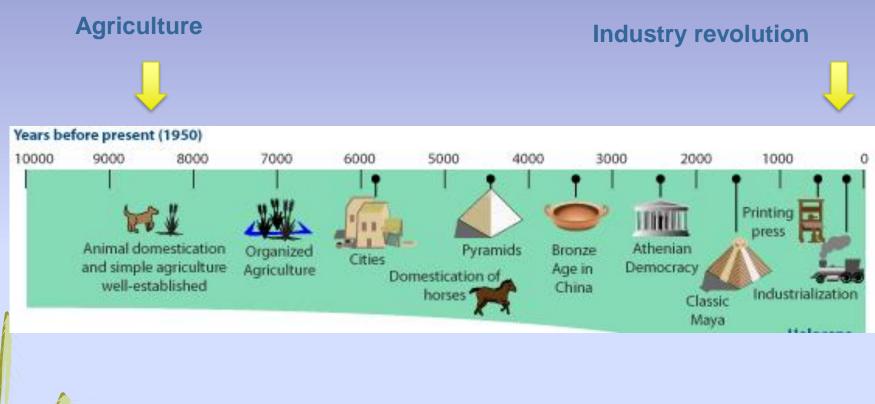
wine

>6,000 year old
Found in Europe, Africa, Asia

One of six jars once filled with resinated wine from the "kitchen" of a Neolithic residence at Hajji Firuz Tepe (Iran). Patches of a reddish residue cover the interior of this vessel. Height 23.5 cm. (Jar on display at the Penn Museum.)

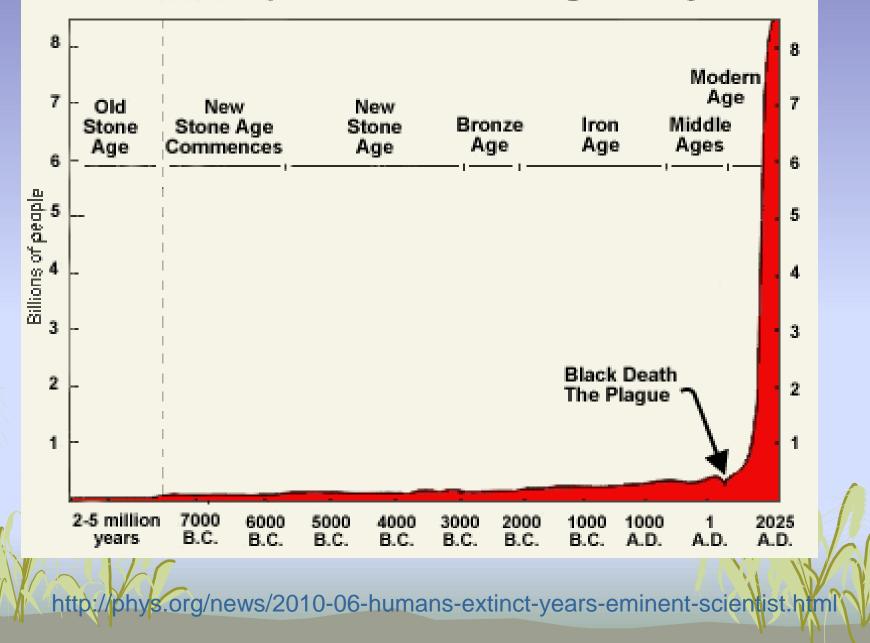
CHEESE



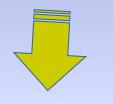

Figure 1 Drawings of representative reconstructed sieve vessels and photographs of specific sieve fragments from the region of Kuyavia submitted to lipid residue analyses. a, b, KUY0750, from Brześć Kujawski site 3. c, d, KUY0757 from Smólsk site 4. The typology of the sieve vessels is comparable to those used by modern-day cheese producers (Supplementary Fig. 1). Drawings used with permission from ref. 20.

2013

>6,000 year old
Found in Europe,
Africa, Asia

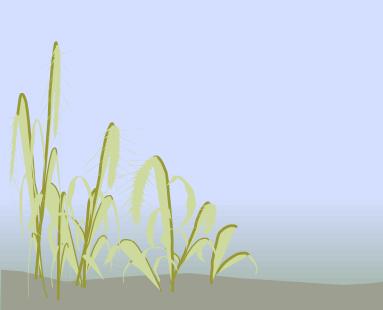

Scm

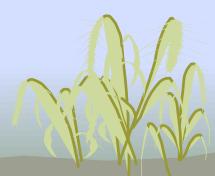
Definition of **Industrial Revolution** in English: The rapid development of **industry** that occurred in Britain in the late 18th and 19th centuries, brought about by the introduction of machinery. It was characterized by the use of steam power, the growth of factories, and the mass production of manufactured goods.

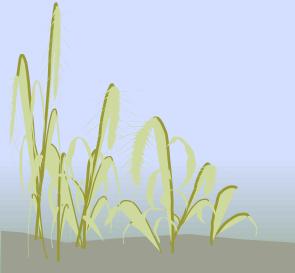

World Population Growth Through History

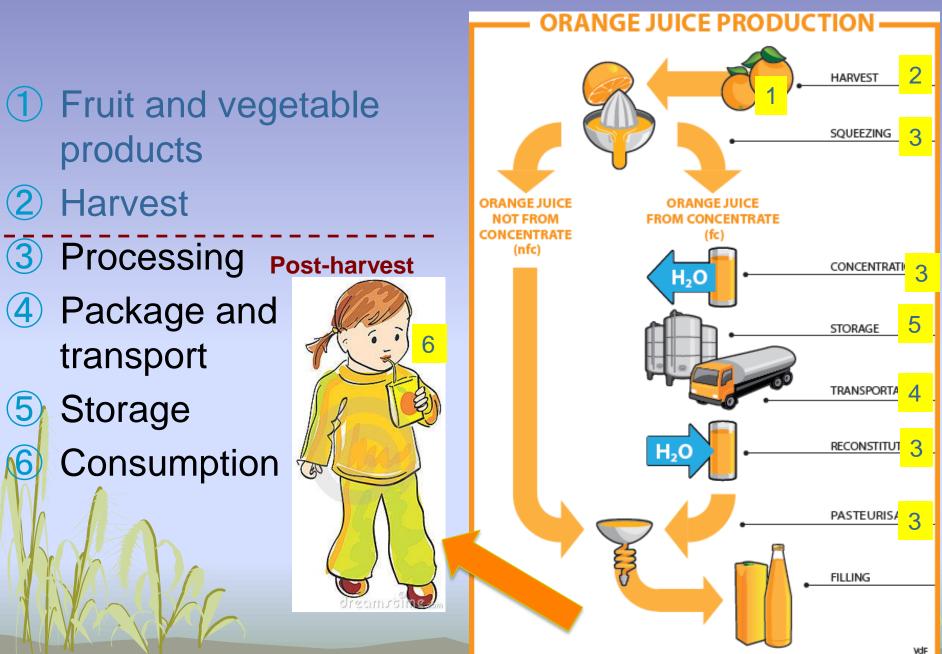
Modern ages

- Industrial revolution
 - Manufactured products
- More people
- Big city
 - Transportation
 - Life style change (single, small family, less cooking, to-go food)









STEPS IN FRUIT AND VEGETABLE HANDLING

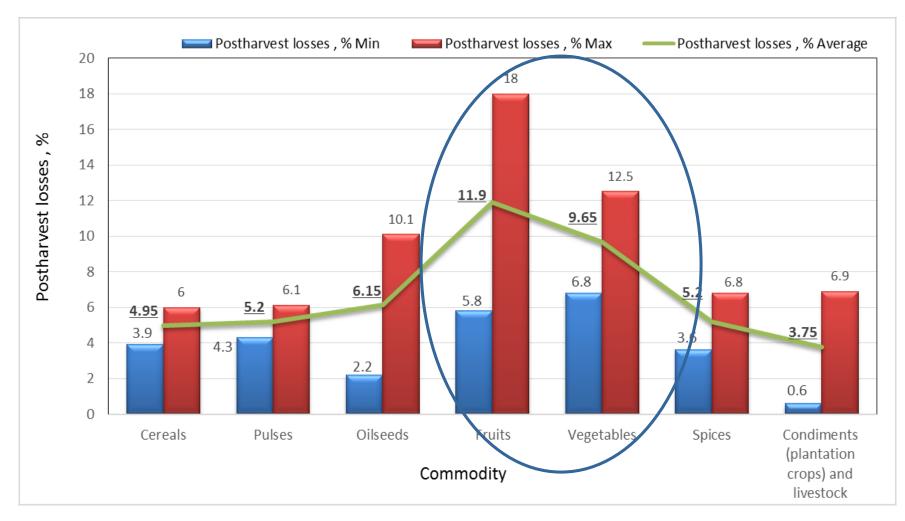
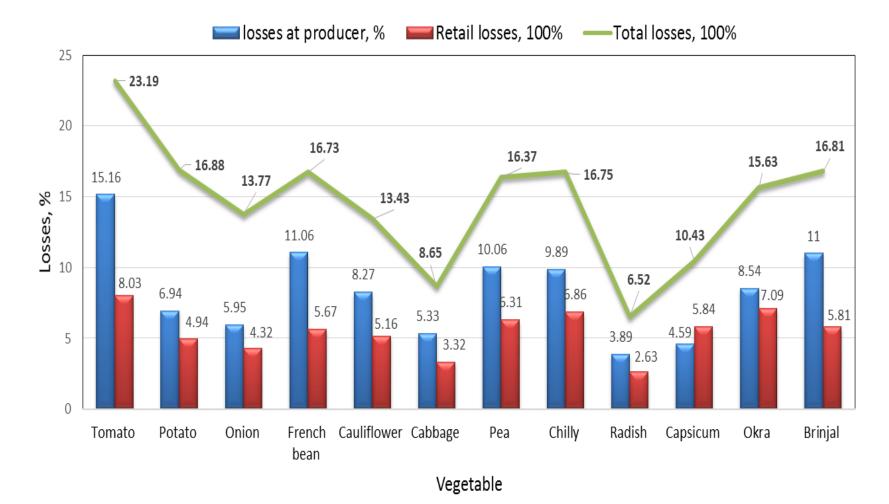
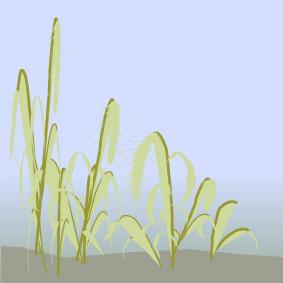


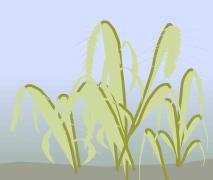
Table 1. Comparison between properties of cereals and roots and tubers regarding their storage capacity (Source: FAO, 1984, quoted by Knoth, J., 1993)

Non-perishable food crops	Perishable food crops
Harvest manly seasonal, need for storage of long duration	Possibility of permanent or semi-permanent production, needs for short-term storage
Preliminary treatment (except threshing) of the crop before storage exceptional	Processing in dried products as an alternative of the shortage of fresh products
Products with low level of moisture content (10-15 percent or even less)	Products with high level of moisture in general between 50-80 percent
Small "fruits" of less than 1 g	Voluminous and heavy fruits from 5 g to 5 kg or even more
Respiratory activity very low of the stored product, heat limited	High or even very high respiratory activity of stored products inducing a heat emission in particular in tropical climates
Hard tissues, good protection against injuries	Soft tissues, highly vulnerable
Good natural disposition for storage even for several years	Products easily perishable, natural disposition for storage between some weeks up to several months (strong influence of the varieties)
Losses during storage mainly due to exogenous factors (moisture, insects or rodents)	Losses due partly to endogenous factors (respiration, transpiration, germination) and partly to exogenous factors (rot, insects)

Fig. 1 Harvest and post-harvest losses in different commodities from nation scale quantitative assessment in India 2011.




Fig 2 Post-harvest losses of different 12 kind of vegetable at producer and retail levels for 12 major vegetables in Uttarakhand


https://s3-eu-west-1.amazonaws.com/...u.../PostharvestSituationandLossesinIndia.pdf

Types of postharvest losses

- Biophysical loss
 - Spoilage
 - Breakage
- Nutrient loss
- Economic loss
 - Financial loss
 - Market force loss

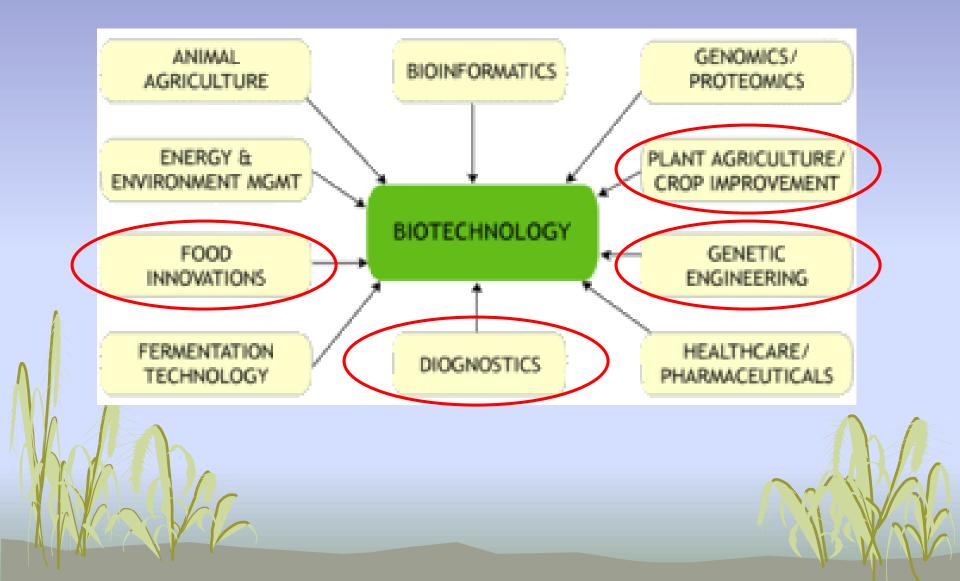
WHAT DO WE WANT FROM BIOTECHNOLOGY ?

Premium line

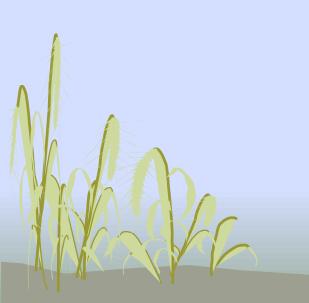
- Use less water, fertilizer = starting cost reduction
- Reliable production (timing, quantity and quality) = more profit
- High nutritional value = increase value
- Slow senescence = waste reduction, more profit
- Products which is robust and have flexibility to manufactured into high value products

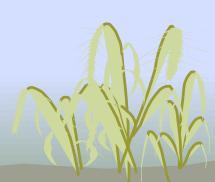
Maintenance of premium lines

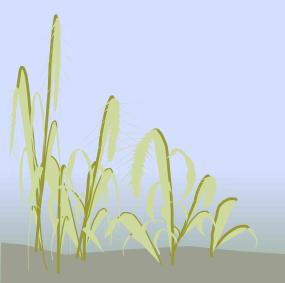
- Good seeds
- Reliable cutting/stocks
- Detection of impurity
 - Chemical contamination
 - Microbial contamination
 - Other contamination such as soil
 - Adulteration

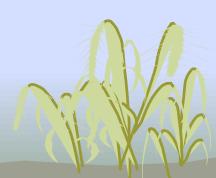

HOW DOES BIOTECHNOLOGY HELP REDUCING POSTHARVEST LOSSES ?

(Modern) Biotechnology

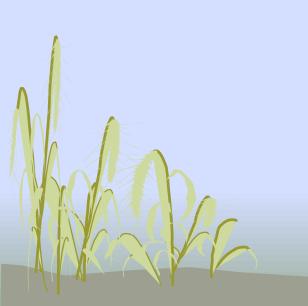

(MODERN) BIOTECHNOLOGY


Biotechnology is the use of living systems and organisms to develop or make products, or "any technological application that uses biological systems, living organisms or derivatives thereof, to make or modify products or processes for specific use" (UN Convention on Biological Diversity, Art.

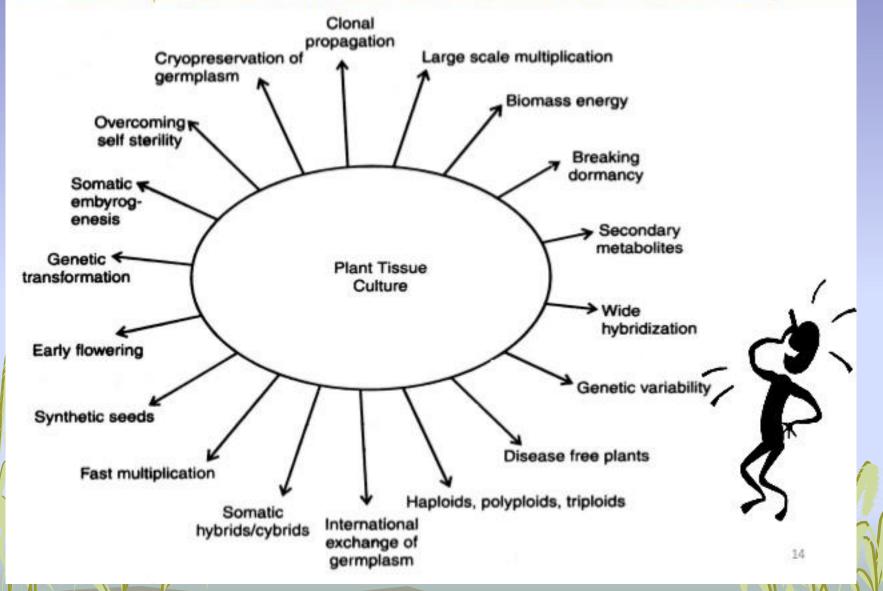

Plant biotechnology

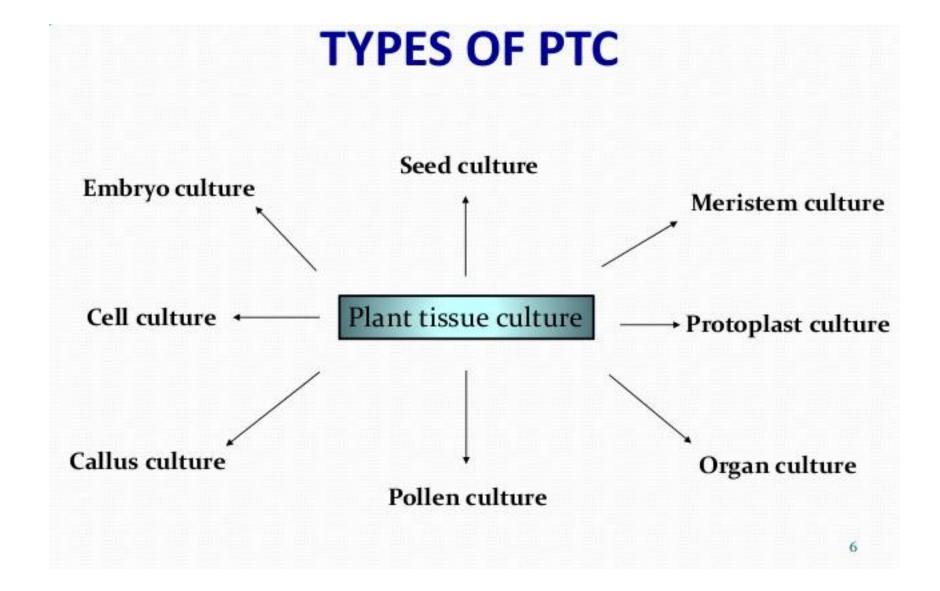

Plant tissue cultureMolecular marker

PLANT TISSUE CULTURE

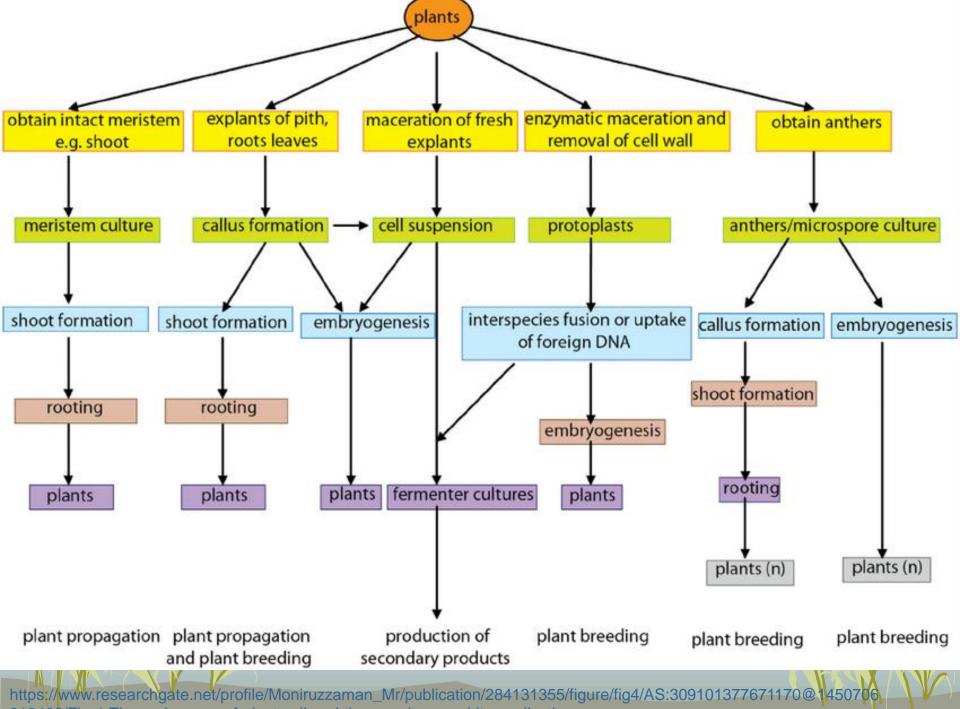


Plant tissue culture


- Generate plantlets/organs/un-differentiate tissues in vitro
- Homogenise in plant developmental stages and strength (synchronize production)
- With/without seeds


Plant tissue culture

- Using synthetic and complex media
- Sterilize condition
- Disease free



Applications of tissue culture to plant breeding



SLIDESHARE.NET

919402/Fig-4-The-major-area-of-plant-cell-and-tissue-culture-and-its-application.png

Coconut tissue culture

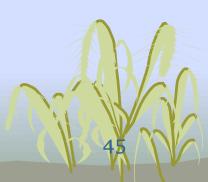
Embryo rescue

- An intro technique for saving the hybrids from fertilization
- Many embryos die at an early stage of development due to unknown reason
- Interspecific crosses between diploids and tetraploids
- Fruit crops (seedless grape, seedless lime, papaya, banana)
- Vegetables (Capsicum, onion, tomato, brinjal)
- Promote the development of weak, immature embryo into viable plants

Capsicum annun Var:-kashi Anmol

MARKER ASSISTED SELECTION (MAS)

 A process whereby a marker
 is used for indirect selection of a genetic determinant or determinants of a trait of interest (i.e. productivity, disease resistance, abiotic stress tolerance, and/or quality)


MAS

- Morphological marker
- Biochemical marker
- Cytological marker
- Molecular marker

Morphological markers

 the presence or absence of awn, leaf sheath coloration, height, grain color, aroma of rice

Eur Food Res Technol (2010) 231:611-621 DOI 10.1007/s00217-010-1313-8

ORIGINAL PAPER

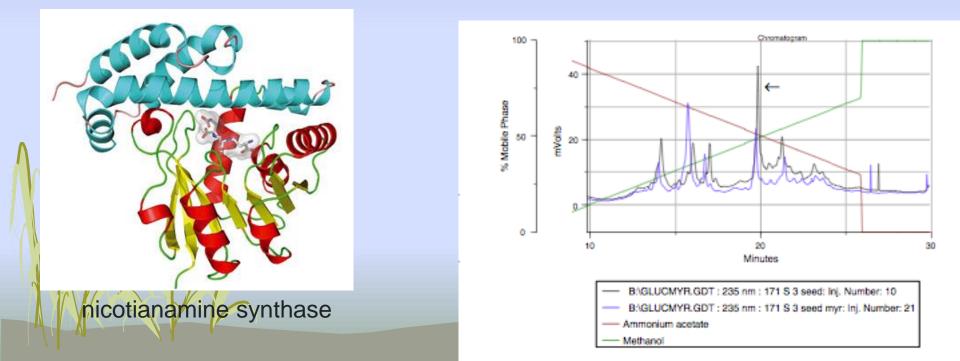
Establishment of a sensory characterization protocol for melon (*Cucumis melo* L.) and its correlation with physical-chemical attributes: indications for future genetic improvements

Table 2 Sensory parameters evaluated by the panel and reference substances used for training sessions

Sensory attribute	Description of the sensation	Reference substance		
Flesh color				
White	Color located in any	0*	No previous training applied	
Yellow	part of the sample with different intensities	155D-4D-2D-1C-1B*	for these parameters	
Orange		158D-159D-164D-164C-167D*		
Rose		49D-49C-49B-49A*		
Green		N149D.N149C.N149R.N149A*		J
Texture of the sample				٦
Firmness	Strength needed for the first chew	 First section of a white asparagus, 2. Fresh cheese, 3. Watermelon, 4. Tender cheese, 5. Olive 		
Juiciness	Amount of juice released when chewing	1. Green apple, 2. Orange, 3. Watermelon		
Fibrosity	Amount of fibers perceived when chewing	Different sections of a white asparagus: 1. First two centimeters (head part), 2. From second to fourth centimeter (medium ground), 3. From fifth to seventh centimeter (bottom part)		
Taste of the sample				
Sweetness	Quantity of sugar perceived	Glucose dissolved in water: 8, 24, 40, 56 mg/ml		
Acidity	Quantity of acids	Citric acid diluted in water: 10, 20, 30), 40 μl/ml	
Flesh aroma				1
Cucumber	Smell perceived in odor or retronasal odor in any part of the sample	Cucumber [(E)-2-Nonenal & (E-Z)-2,6	5-Nonadienal]	
Watermelon		Watermelon [(Z)-6-Nonenal]		
Pineapple		Pineapple [Methyl hexanoate]		
Peach		Peach [Benzaldehyde]		
Mango		Mango [Ethyl 2-methylpropanoate]		
Kiwi		Kiwi [(E,Z)-2,6-Nonadienal]		
Banana		Banana [Amyl acetate]		

Flesh colour

Texture


Taste

Flesh aroma

* Color described in RHS Color Chart. Royal Horticultural Society

Biochemical markers

- Proteins or chemical produced by plants
- Enzymatic activity, HPLC

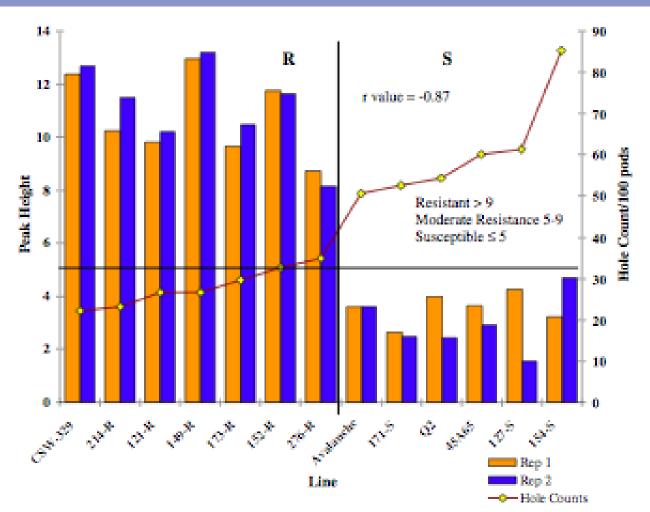


Fig. 3 Comparison between replicated standardized peak height concentrations in upper cauline leaf extracts and larval exit hole counts from the field trial in 2007. Data are organized by ascending larval exit hole counts. The r value at -0.87 shows a strong significance difference between R and S

Biochemical markers for cabbage seedpod weevil (Ceutorhynchus obstrictus (Marsham)) resistance in canola (Brassica napus L.)

Euphytica (2009) 170:297–308

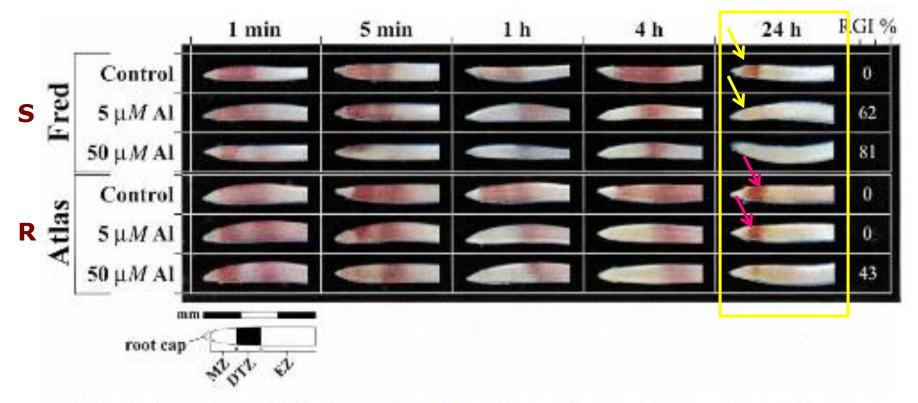
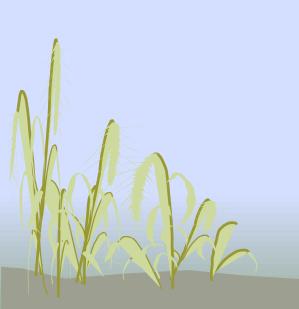
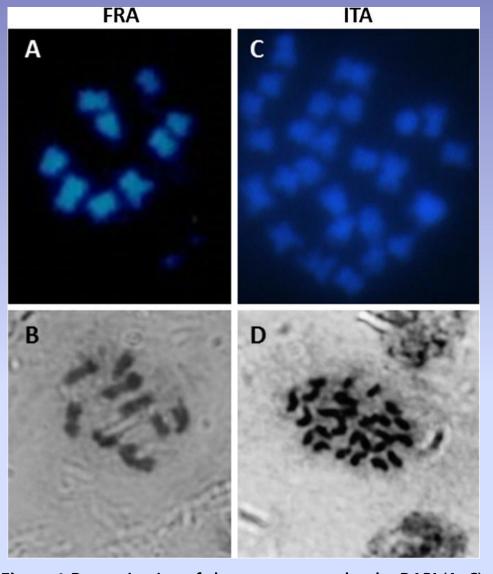
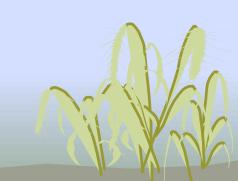
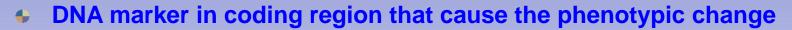



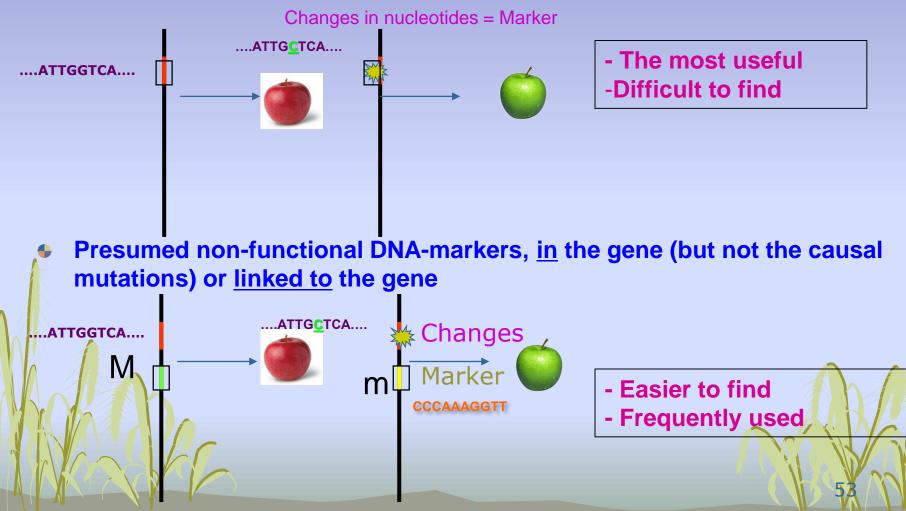
Fig. 2. Kinetics of NBT reduction activity in the Al-sensitive and the Al-tolerant cultivars exposed to various Al concentrations. Two wheat cultivars (Al sensitive, Fredrick: Fred; Al-tolerant, Atlas-66: Atlas), were exposed to the Al control solution (1 mM CaCl₂, pH4.15) or to the same solution containing Al with the final concentrations indicated. RGI was estimated after 24 h of Al exposure. NBT reduction was performed as in Fig. 1. The drawing represents the scale in mm and the approximate positions of the different root regions (based on Sasaki et al. 1997, and Sivaguru and Horst 1998). MZ, meristematic zone; DTZ, distal transition zone; EZ, elongation zone.


A new biochemical marker for aluminium tolerance in plants PHY\$IOLOGIA PLANTARUM 115: 81–86. 2002

Cytological marker

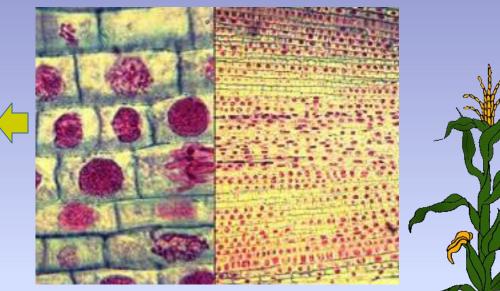

 Markers that are related to variation in chromosome number, shape, size and banding pattern

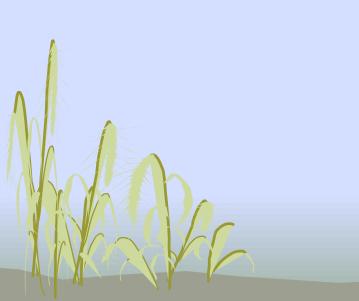

Figure 1 Determination of chromosome number by DAPI (A, C) and hematoxylin (B, D) staining of chromosomes showing counts of 9 in the haploid plants from France (FRA) and 27 in the tri-haploid plant from Italy (ITA). Chromosome count for the plant from Spain (ESP) was described in Aleza *et al.* [22]. Germana *et al. BMC Plant Biology* 2013, **13**:129 http://www.biomedcentral.com/1471-2229/13/129

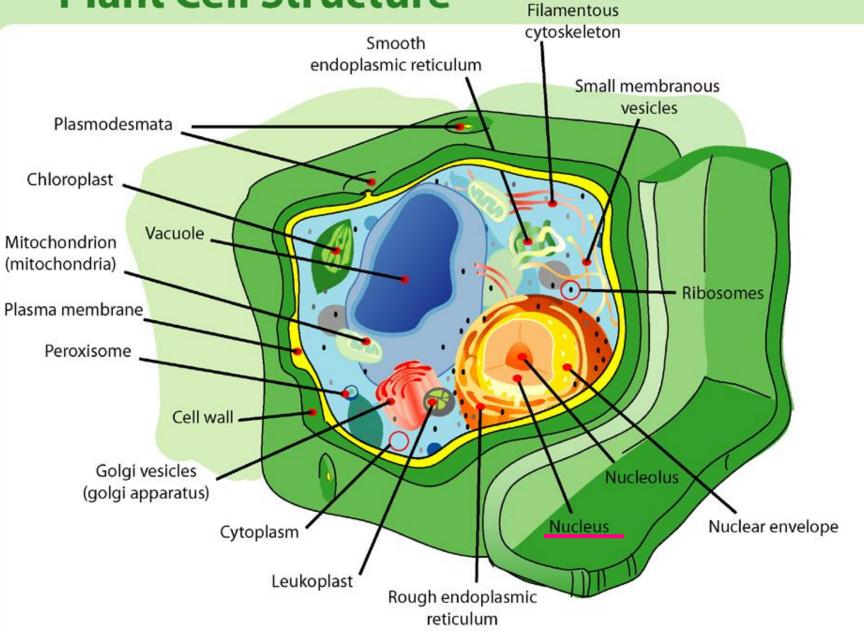


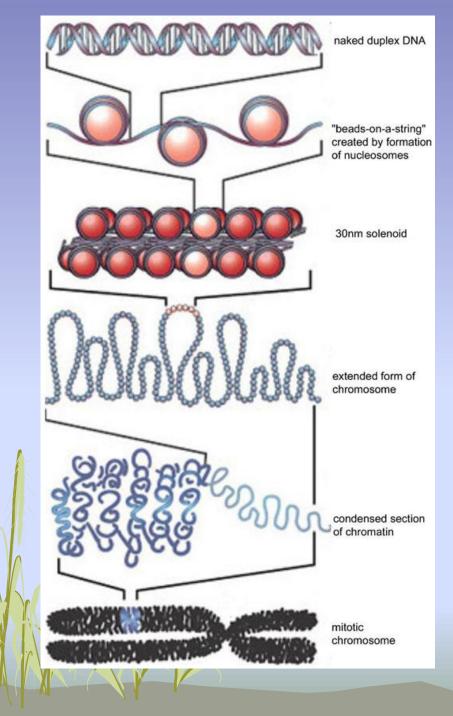
Molecular marker

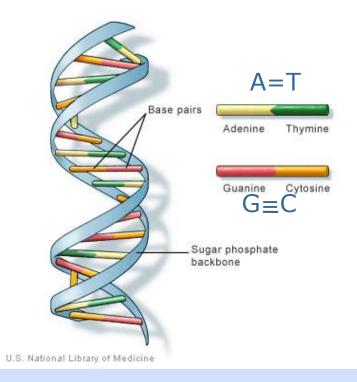
 A molecule contained within a sample taken from an organism (biological markers) or other matter. It can be used to reveal certain characteristics about the respective source.

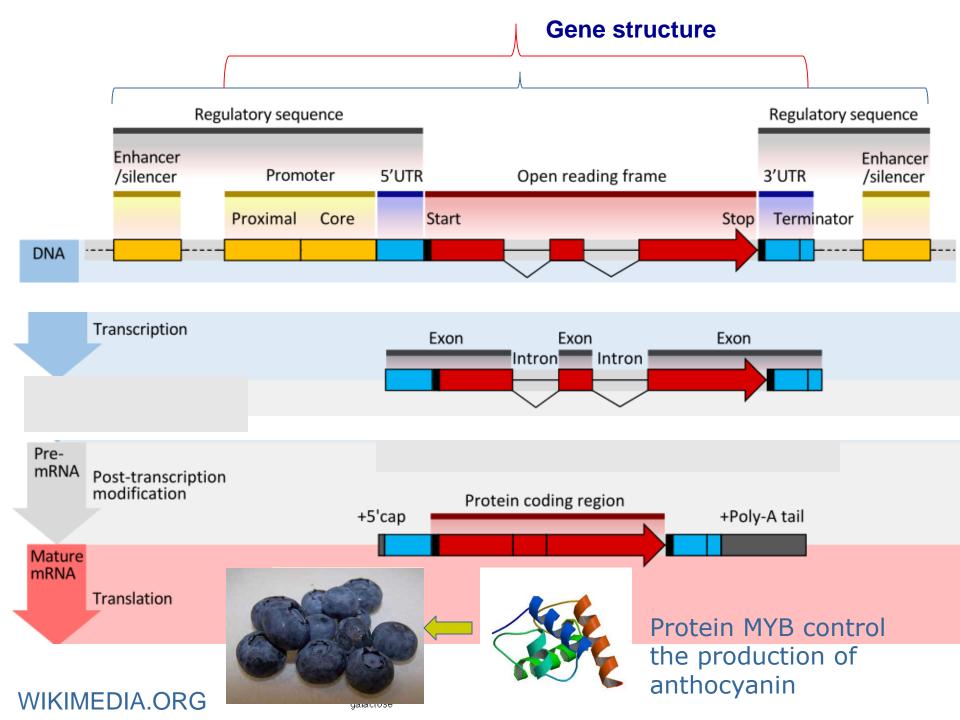

Two basic types of DNA-markers

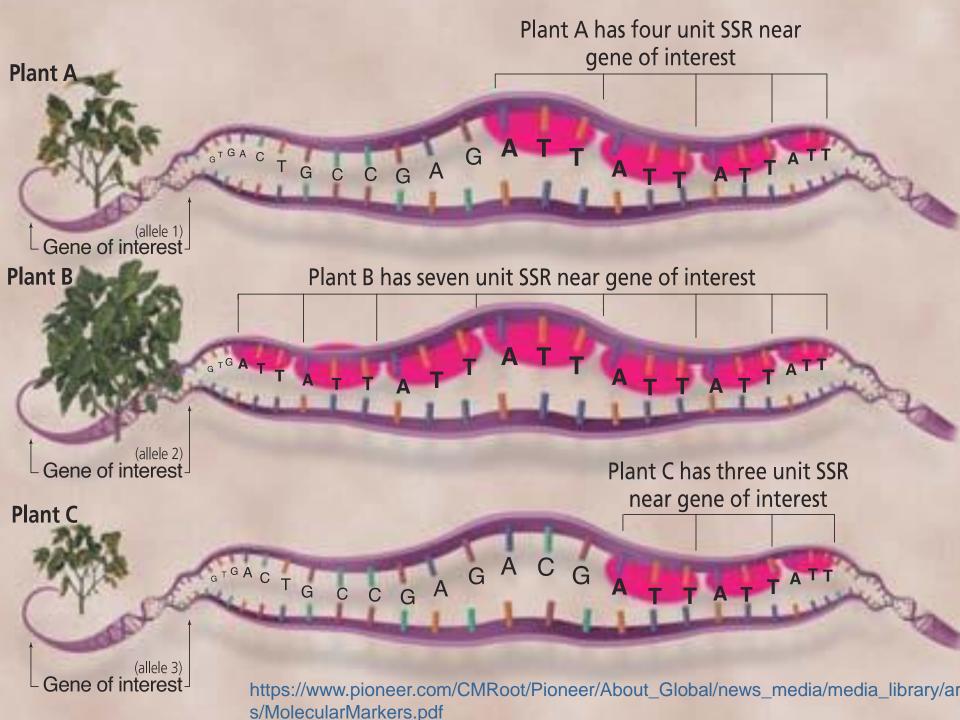



Plant chromosome








Plant Cell Structure

Advantages of MAS

- Simpler method compared to phenotypic screening
 - Especially for traits with laborious screening
 - May save time and resources
- Selection at seedling stage
 - Important for traits such as grain quality
 - Can select before transplanting

Increased reliability

No environmental effects

Can discriminate between homozygotes and heterozygotes and select single plants

Source: IRR

Potential benefits from MAS

- More accurate and efficient selection of specific genotypes
 - May lead to accelerated variety development
- More efficient use of resources
 - Especially field trials

Crossing house

Hybridization based

Restriction fragment length polymorphism (RFLP)

Random Amplified Polymorphic DNA (RAPD)

Sequence characterized amplified regions (SCAR)

Simple sequence repeats (SSR)

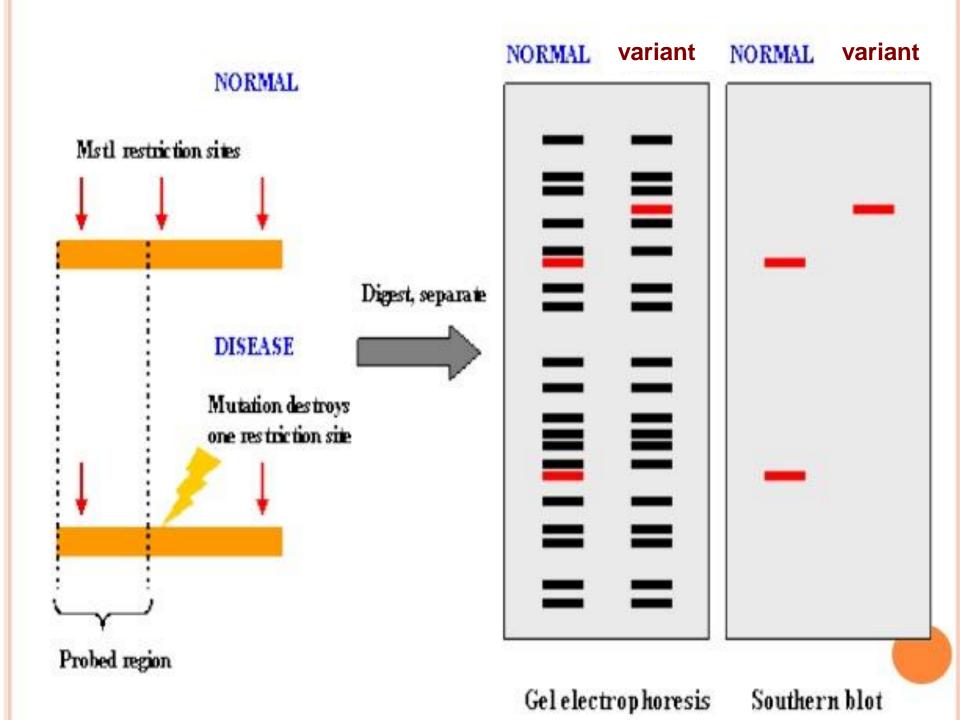
Single nucleotide polymorphism (SNP)

MOLECULAR MARKER

PCR based

RFLP - Restriction fragment length polymorphism

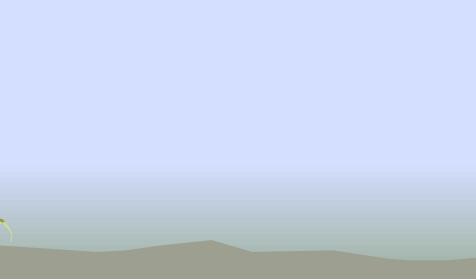
• A technique to identify a change in the genetic sequence that occurs at a site where a restriction enzyme cuts.

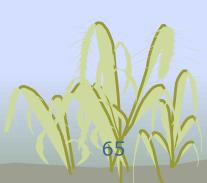

Restriction enzymes are proteins isolated from bacteria that recognize specific short sequences of DNA and cut the DNA at those sites. The normal function of these enzymes in bacteria is to protect the organism by attacking foreign DNA, such as viruses.

Enzyme	Recognition Site
Rsa 1	G T A C C A T G
Mbo 1	'G АТС СТА G <mark>,</mark>
EcoR1	G ^I A A T T C C T T A A G

Rsal from Rhodopseudomonas sphaeroides (S. Kaplan)

Mbol from Moraxella bovis

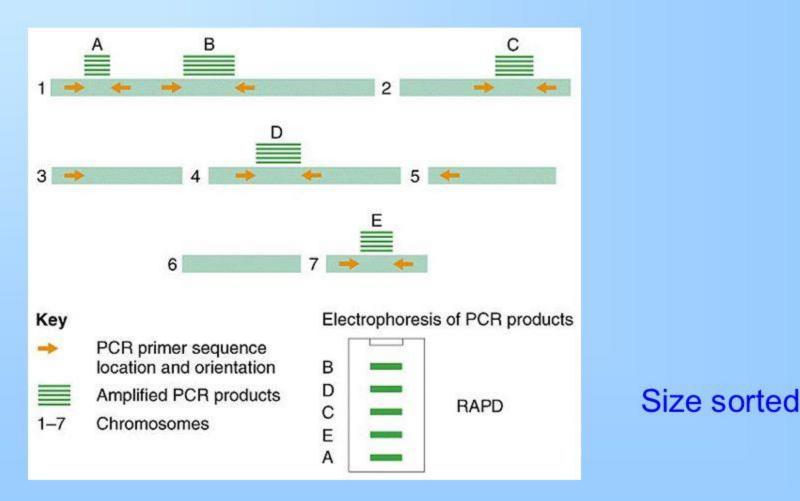

EcoRI from Escherichia coli



Theor Appl Genet (2008) 118:15-27 DOI 10.1007/s00122-008-0873-5

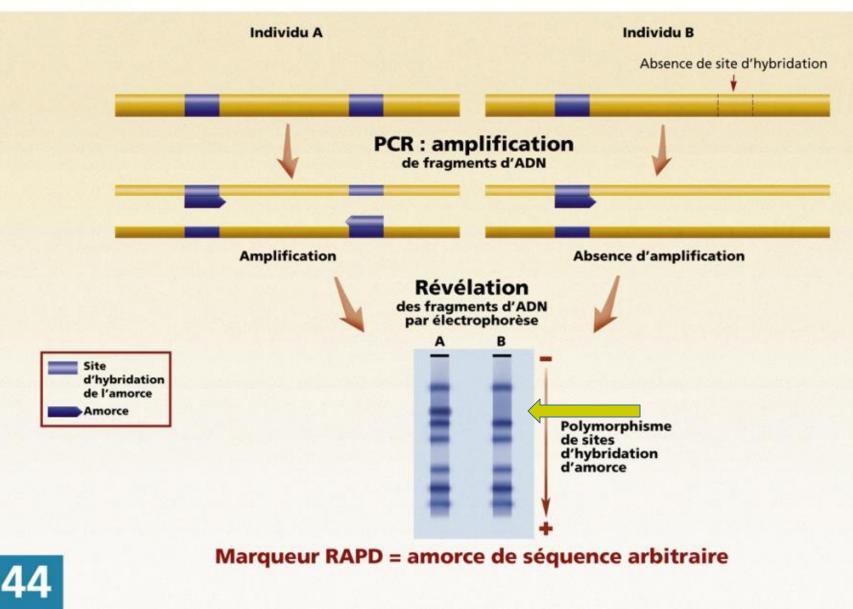
ORIGINAL PAPER

BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L.)

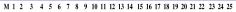


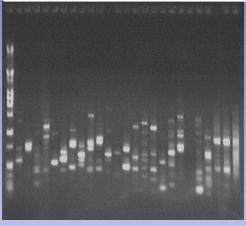
RAPD - Random Amplified Polymorphic DNA

 DNA fragments from PCR amplification of random segments of genomic DNA with single primer of arbitrary nucleotide sequence and which are able to differentiate between genetically distinct individuals Can be used with DNA of unknown sequence


RAPD: randomly amplified polymorphic DNA

Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC & Gelbart WM (1996). An Introduction to Genetic Analysis, 6th edn. W.H. Freeman and Co., NY.


Les marqueurs RAPD



Γ.

dasyphyllum; (h and i) S. gilo; (j) S. scabrum; (k) S. incanum; (l) S. aethiopicum; (m) S. erianthum.

Figure 2. RAPD profiles generated by primer B-18 for *Solanum* samples studied. Legend: M represents the 100 bp DNA Ladder which serves as the reference point; 1 to 25 corresponds to bands produced by the amplified DNA from the 25 samples.

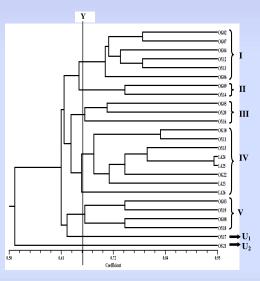
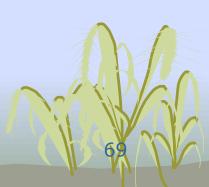


Figure 3. A UPGMA dendrogram showing genetic relationship among accessions of eggplants studied. Legend: Y represents truncated line at a co-efficient of similarity 0.65; I to V represent the five clusters that were distinguishable from the dendrogram while U_1 and U_2 represent ungrouped samples at that co-efficient of similarity.

academic**Journals**


Val. 6(1), pp. 1-7, January 2014 DOI: 10.5897/IJGMB2013.0089 ISSN 2006-9863 © 2014 Academic Journals http://www.academicjournals.org/IJGMB

International Journal of Genetics and Molecular Biology

Full Length Research Paper

Partitioning and distribution of random amplified polymorphic DNA (RAPD) variation among eggplant **Solanum** L. in Southwest Nigeria

26 samples of eggplants, can be separated by RAPD in to 5 groups

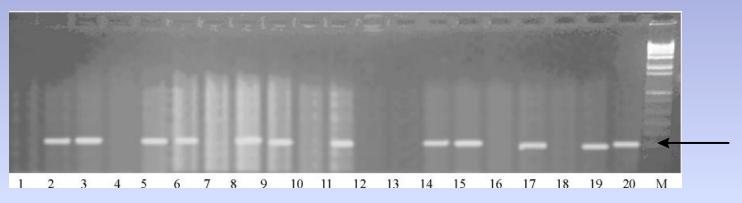
SCAR - Sequence characterized amplified regions

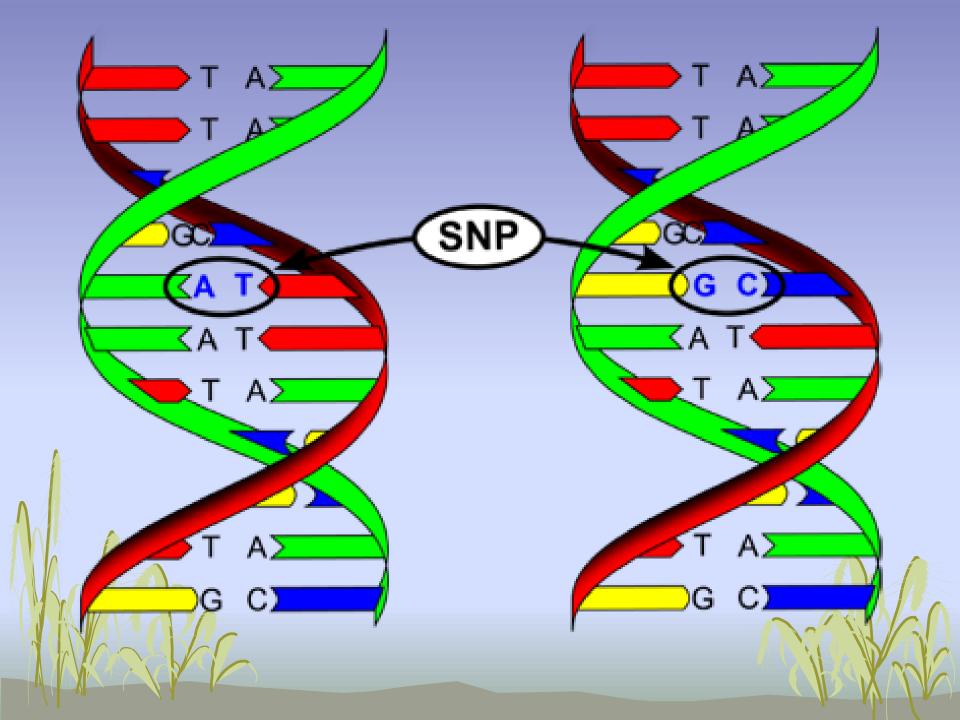
 SCARs are DNA fragments amplified by the Polymerase Chain Reaction (PCR) using specific 15-30 bp primers, designed from nucleotide sequences established in cloned RAPD (Random Amplified Polymorphic DNA) fragments linked to a trait of interest.

Indian J. Genet., 76(1): 116-118 (2016) DOI: 10.5958/0975-6906.2016.00018.3

Short Communication

A molecular marker linked to the male gender of *Actinidia arguta* Siebold & Zucci




Fig. 2. Portion of amplification products of SCAR in hardy kiwi F_1 plants. 1-20 = different accessions of F_1 generation

SNP - Single nucleotide polymorphism

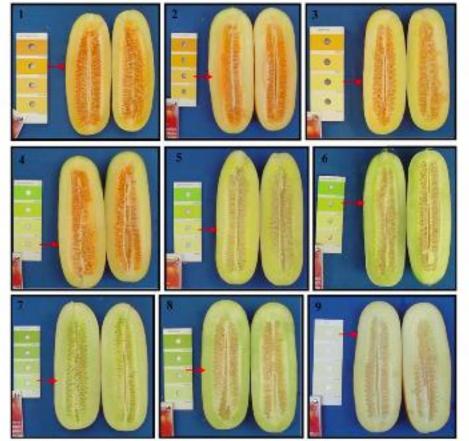
- a DNA sequence variation occurring when a single nucleotide adenine (A), thymine (T), cytosine (C), or guanine (G]) in the genome differs between members of a species or paired chromosomes in an individual.
- Single nucleotides may be changed (substitution), removed (deletions) or added (insertion) to a polynucleotide sequence

SNPs may fall within coding sequences of genes, non-coding regions of genes, or in the intergenic regions between genes

							SN	P	V		Y	V	IJ.	3	B	DECOM
	AC	G	т	G	т	С	G	G	т	с	т	т	A	A	Α	Maternalchromosome
Individual 1	AC	G	Т	G	Т	С	С	G	Т	С	Т	Т	A	A	A	Paternal chromosome
Individual 2	A C A C					1110										Maternal chromosome Paternal chromosome
Individual 3	A C A C															Maternal chromosome Paternal chromosome

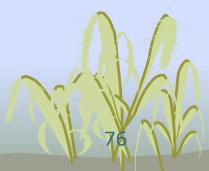
The position of the SNP is indicated by the box. Individual 1 is heterozygous, while individuals 2 and 3 are homozygous.

Euphytica (2010) 171:301-311 DOI 10.1007/s10681-009-0017-2


REVIEW

Inheritance of beta-carotene-associated flesh color in cucumber (Cucumis sativus L.) fruit

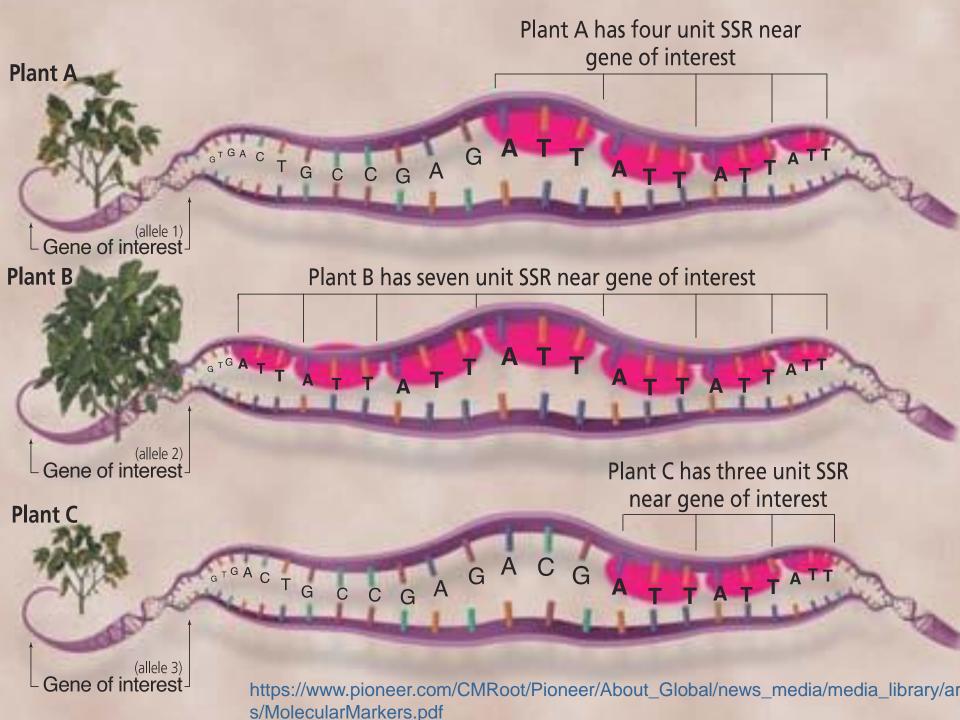
H. E. Cuevas ' H. Song ' J. E. Staub ' P. W. Simon


Table 1 Number of samples, means and standard errors (SE) for β -carotene content (ug g⁻¹) of fruit mesocarp and endocarp classification used to characterized cucumber (*Cucumis sativus* L.) flesh color of parental lines and segregating generations (F₂, BC₁P₁, and BC₁P₂) derived from unpigmented (white) interior flesh cucumber inbred line 'Gy7' (P₁) and the pigmented (orange) interior flesh inbred line 'EOM 402-10' (P₂) as evaluated in two greenhouses in Madison, Wisc. in 2008

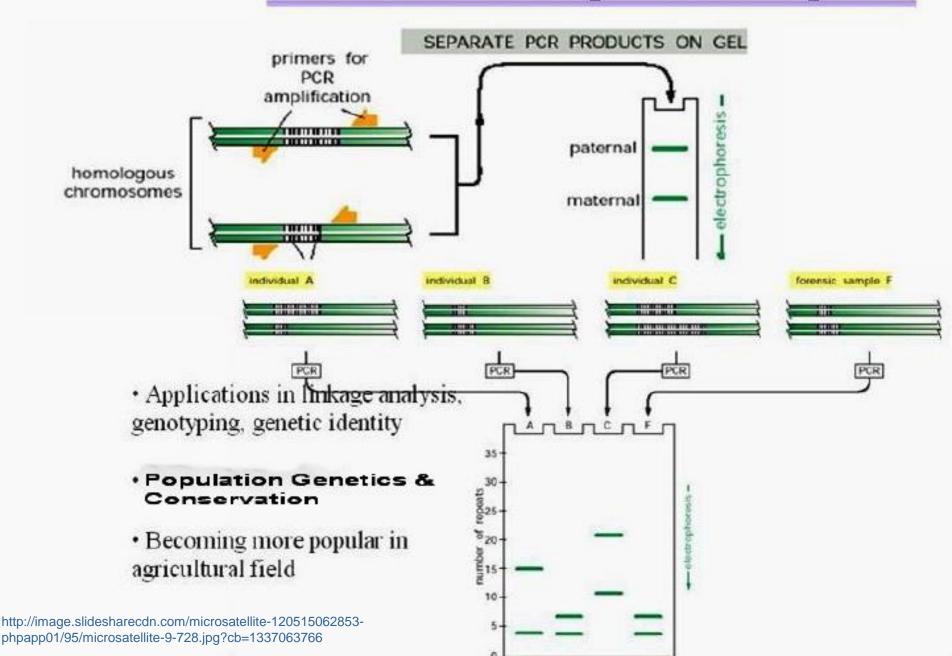
Color segregation ^a	Me	socarp	Endocarp			
	n ^b	$Means^{c}\pm SE$	n ^b	$Means^{c}\pm SE$		
Orange (ORG)	4	$2.72\pm1.15^{\rm a}$	26	$7.54\pm0.68^{\rm a}$		
Light orange (LORG)	4	$1.90 \pm 0.83^{\circ}$	1	3.05 ⁿ		
Yellow (Y)	11	0.34 ± 0.17^{b}	5	0.73 ± 0.18^{b}		
Light yellow (LY)	6	0.06 ± 0.04^{b}	2	0.33 ± 0.11^{b}		
Yellow green (YGR)	7	0.10 ± 0.07^{b}		-		
Green yellow (GRY)	5	0.07 ± 0.05^{b}	2	0.19 ± 0.18^{b}		
Light green (LGR)	5	0.01 ± 0.00^{b}	2	0.19 ± 0.17^{b}		
Green (GR)	5	0.01 ± 0.00^{b}	3	0.37 ± 0.32^{b}		
White (WH)	42	0.02 ± 0.00^{b}	5	0.16 ± 0.08^{b}		

An example of the use of SNP for flesh colour In cucumber

	N							
N.		Gene symbol*	Cucumber EST database	NCBI	Sequence of primers used to amplify fragment used for genotyping	Annealing temp. (°C)	Fingment size (bp)	Polymorphism
	Y	PS	CU 2624	GQ203104	F- CTTTGTCTGGTGATGA AGATGG R- CACGCCTTGTCAA TITGTTG	60	110	INDEL (13 bp) ^c
	\mathbf{V}'							

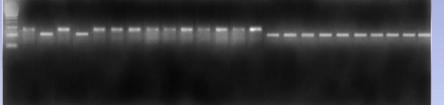

Theor Appl Genet (2014) 127:2051–2064 DOI 10.1007/s00122-014-2360-5

ORIGINAL PAPER

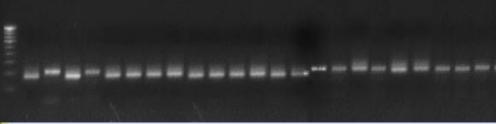

High-density single nucleotide polymorphism (SNP) array mapping in *Brassica oleracea*: identification of QTL associated with carotenoid variation in broccoli florets

SSR - Simple sequence repeats

 DNA fragments from PCR amplification of random segments of genomic DNA with single primer of arbitrary nucleotide sequence and which are able to differentiate between genetically distinct individuals Can be used with DNA of unknown sequence

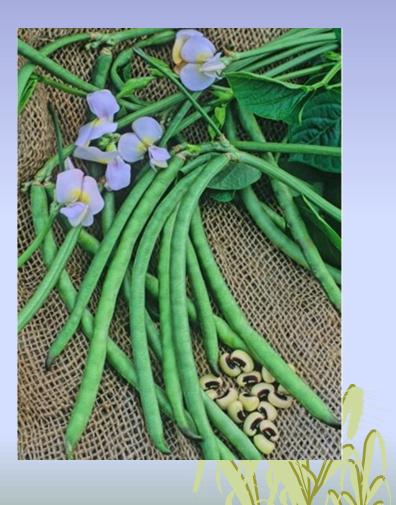

Microsatellites [STRs/SSRs]

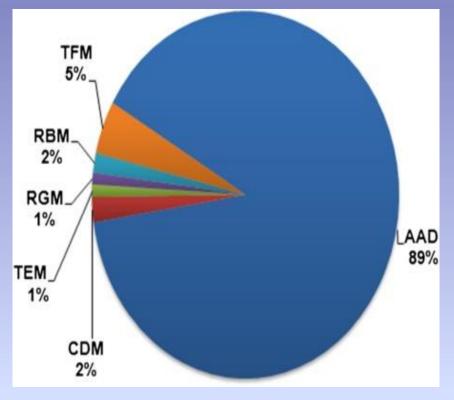
AGRICULTURAL RESEARCH COMMUNICATION CENTRE www.arccjournals.com/www.legumeresearch.in


Identification of SSR marker associated with rust resistance in cowpea (*Vigna unguiculata* L) using bulk segregant analysis

M R S RB SB R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Bulk Segregate Analysis for Primer VuUGM05


M R S RB SB R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10



Bulk Segregate Analysis for Primer VuUGM19

FIG 2: SSR markers VuUGM05 and VuUGM19 revealed clear cut difference in both parents as well as in two bulks.

M-Marker R-Resistant S-Susceptible RB-Resistant Bulk SB-Susceptible bulk R₁-R₁₀-Resistant Individual Plants S₁-S₁₀-Susceptible Individual Plants

Figure 1 Percentages of studies utilizing different types of molecular markers. The chart is based on an informal literature search performed with Google Scholar on 22.08.2012 resulting in 1032570 hits. Abbreviations are according to acronyms found in the text: **AAD** – Arbitrarily amplified DNA markers, including AFLP, ISSR, RAPD, and other modified but similar methods mentioned in the text; **CDM** – conserved DNA based markers, including CDDP, PBA, TBP, ITP (all modified methods are cited in the text); **TEM** – transposable element based markers including IRAP, REMAP, ISAP, iPBS and SSAP. **RGM** – resistance-gene based markers (RGAP), NBSprofiling; **RBM** – RNA-based markers, iSNAP, EST- and cDNA- based markers/ **TFM** – targeted fingerprinting markers (DALP, PAAP, SRAP, TRAP, CORAP and SCOT). Poczai et al. Plant Methods 2013, 9:6 http://www.plantmethods.com/content/9/1/6

REVIEW

Open Access

Advances in plant gene-targeted and functional markers: a review

Table 1 Summary table of marker systems and groups

Group	Marker system	Principle in a nutshell	References
(1) Conserved DNA and gene family based markers (CDMs)	(1.1) CDDP	Conserved plant genes are targeted with short universal or degenerate primers to reveal length polymorphism. Use of primer combinations is also possible.	Collard and Mackill [57]
	(1.2) PBA	Universal primers target the exon-intron junction sites of cytochrome (cyt) P450 mono-oxygenases. Polymorphism is revealed based on the random distribution of gene family members.	Yamanaka et al. [58]
	(1.3) TBP	Single degenerate primer pairs anneal to the conserved parts of the β -tubulin exons and amplify intercalated introns from different tubulin isotypes.	Bardini et al. [59]; Breviario et al. [60]; Galasso et al. [61]
	(1.4) ITP	Intron regions of choice are amplified by exon flanking primers revealing polymorphism.	Weining and Langridge [62]
(2) Transposable element based markers (TEMs)	(2.1) IRAP	Amplification of internal sequences between two retrotransposon repeats with primers annealing to LTR motifs.	Kalendar et al.[63]
	(2.2) REMAP	An LTR specific primer and an ISSR primer are used to detect polymorphism.	Kalendar et al. [63]
	(2.3) ISAP	Primers designed in various positions within SINE elements are used to amplify adjacent genomic regions.	Seibt et al. [64]
MARA.	(2.4) iPBS	Primers anneal to PBS regions of head-to-head oriented LTR retrotransposons. The amplified products contain LTR regions and intervening genomic	Kalendar et al. [65]
		regions.	
	(2.5) SSAP	DNA is digested with restriction enzymes. Adapters are ligated to restriction sites, and amplification is performed with LTR specific and adapter specific primers containing selective nucleotides.	Waugh et al. [66]

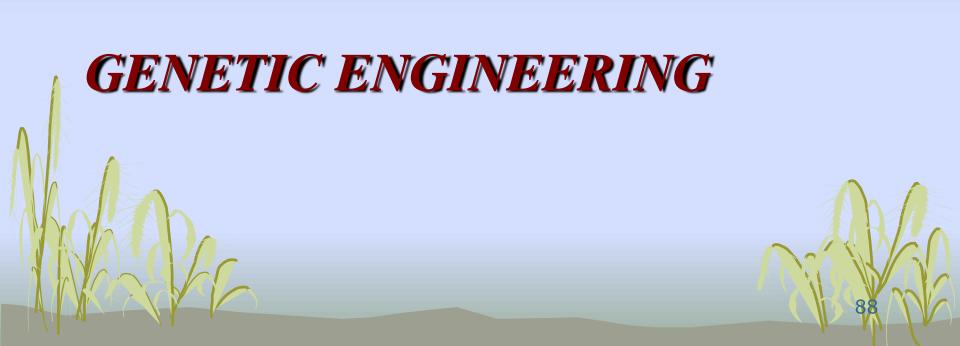
(3) Resistance-gene based markers (RGMs)	(3.1) RGAP	Resistance-gene based analogue fingerprints are generated with degenerate specific primers or primer pairs, designed to match conserved regions of R-genes.	Leister et al. [67] Poczai et al. Plant Methods 2013, 9 :6
	(3.2) NBS- profiling	Genomic DNA is digested with restriction enzymes after the ligation of adapters. Specific fingerprints are generated from resistance gene regions with adapter specific and R-gene specific primers.	Linden et al. [68]
(4) RNA-based markers (RBMs)	(4.1) iSNAP	Primers are designed from small RNAs and flanking regions to generate polymorphic banding patterns.	Gui et al. [69]
	(4.2) cDNA-AFLP	An AFLP analysis is carried out using cDNA as a starting pool, with several modifications existing for fine-tuning.	Bachem et al. [70]
	(4.3) cDNA-RFLP	cDNA is used for probes in RFLP analysis.	Bryan et al. [71]
	(4.4) EST-SSR	EST databases are mined <i>in silico</i> to locate SSRs and design primers to match genetic microsatellites.	Kantety et al. [72]
(5) Targeted fingerprinting markers (TFMs)	(5.1) DALP	The common M13 sequencing primer is paired with a forward primer containing the -40 USP core and 3' selective nucleotides to generate fingerprints.	Desmarais et al. [73]
	(5.2) PAAP	Degenerate regions annealing to plant promoter regions are added to short oligonucleotides to detect polymorphism.	Pang et al. [74]
	(5.3) SRAP	Primers contain a random 5' filter, a core sequence (AATT or CCGG) and three variable nucleotides at their 3'. Amplification follows a two step procedure where first mismatches are allowed at a lower temperature to generate a starting pool for subsequent higher temperature amplification.	Li and Quiros [75]
	(5.4) TRAP	An arbitrary SRAP primer is paired with a fixed primer designed from ESTs.	Hu and Vick [76]
Mach	(5.5) Corap	Arbitrary primers are designed from ESTs as in TRAP, but the fixed primer contains a different core (CACGC), as in SRAP. This sequence is often found in plant introns.	Wang et al. [77]
	(5.6) SCoT	ATG start codons are incorporated into random primers to generate polymorphic fragments from the genome. Primers can be used alone or in combination.	Collard and Mackill [78]

	Conserved DNA a (CDMs)	and gene family	based markers		Transposable elemen	t based markers	; (TEMs)	
	CDDP	PBA	TBP	ITP	IRAP/REMAP	ISAP	iPBS	SSAP
Abundance	Medium, may depend on targeted genes	High	Medium	Low, may depend on targeted genes	High	High	High	High
Reproducibility	High	High	High	High	Medium	High	High	High
Polymorphism	Medium	High	High	Medium	Medium	Medium	High	High
Prior sequence information	Yes	No	No	Yes	Yes	Yes	No	Yes
Visualization	Agarose gel electrophoresis	Agarose gel electrophoresis	Agarose gel electrophoresis or silver stained PAGE	Agarose gel electrophoresis sometimes with high resolution	Agarose gel electrophoresis	Agarose gel electrophoresis	Agarose gel electrophoresis	Silver stained PAGE
Specificity	Not reported	High	High	High	High	High	High	High
Size of bands	200-1,500 bp	100-1,500 bp	500-2,000 bp	50-800 bp	100-5,000 bp (up to 10 kbp)	250 - 2,500 bp	100-5,000 bp	50-500 bp
Homoplasy	High	High	Low	Low	Medium	Not reported	Low	Low
Reaction artifacts								
i. Uniparental bands	Not reported	Not reported	No	No	No	Not reported	No	No
ii. Heteroduplexes	Not reported, but may occur	Not reported, but may occur	Not reported, but may occur	Yes	No	No	No	No
iii. Nested priming	Not reported	Not reported, but may occur	No	No	May occur	Not reported	Not reported	May occur
v. Other	A	Amplicons may be	e generated from pseu	dogene loci	Inconsistencies in bands associated with TE activity	No	No	Inconsistencies in bands associated with TE activity

Table 2 Comparison of various aspects of gene-targeted and functional marker techniques

Applications in Plant Sciences 2014 2(7): 1400017 doi:10.3732/apps.1400017

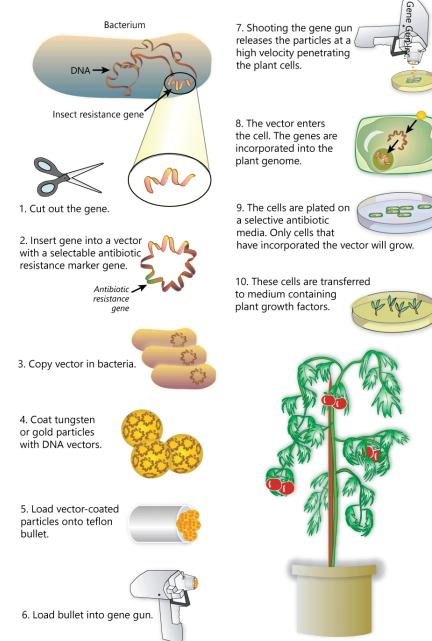
Robarts & Wolfe-Sequence-related amplified polymorphism (SRAP) markers: A review


TABLE 1. A summary of the attributes of different dominant molecular markers used in plant biology, and a relative comparison of their attributes.

Marker	PCR protocol	Genomic target	Relative cost	Dominance	Repeatability
RAPD	one-step	anonymous	low	dominant	moderate
ISSR	one-step	anonymous	low	dominant	high
AFLP	multistep	anonymous	moderate	mixed (low)	high
SRAP	one-step	coding	low	mixed (moderate)	high

Note: AFLP = amplified fragment length polymorphism; ISSR = inter-simple sequence repeat; RAPD = random-amplified polymorphic DNA; SRAP = sequence-related amplified polymorphism.

Application of markers in crop improvement

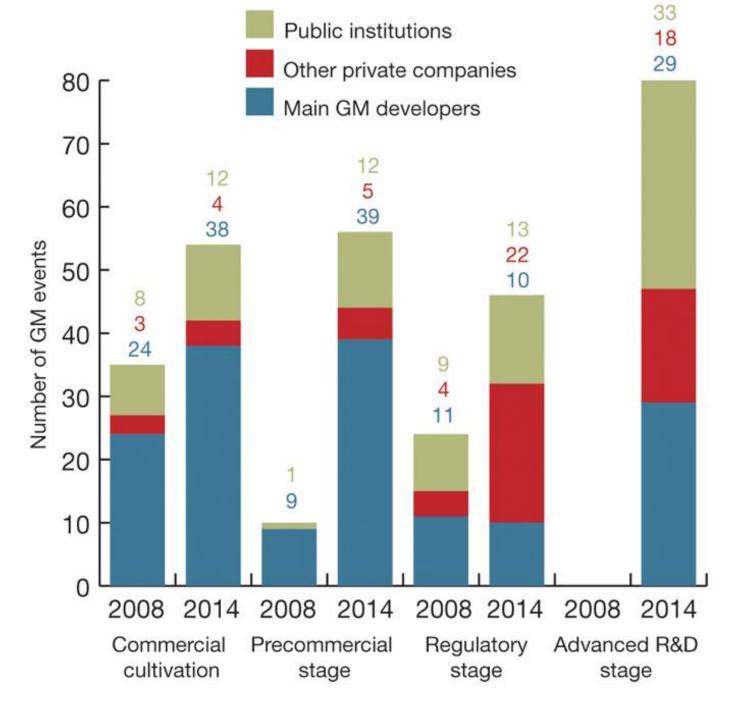

- Selection of good characters lines from germplasm
 - Fruit characters; firmness, sweetness, colour, aroma, ethylene production
 - Morphology; shape, size
 - Abiotic stress; drought
 - Biotic stress; disease resistance
 - Assist plant breeders to determine outsprings with desired characters
 - Acquire lines with several characters simultaneously

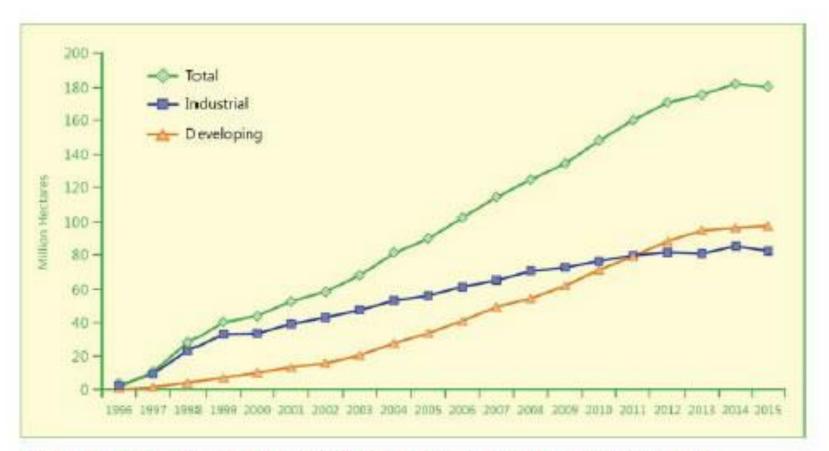
Genetic engineering

 Addition of a foreign gene or genes or DNA to the genome of an organism. A gene holds information that will give the organism a trait.

Creation of an Insect Resistant Tomato Plant

Insect resistant tomato plant

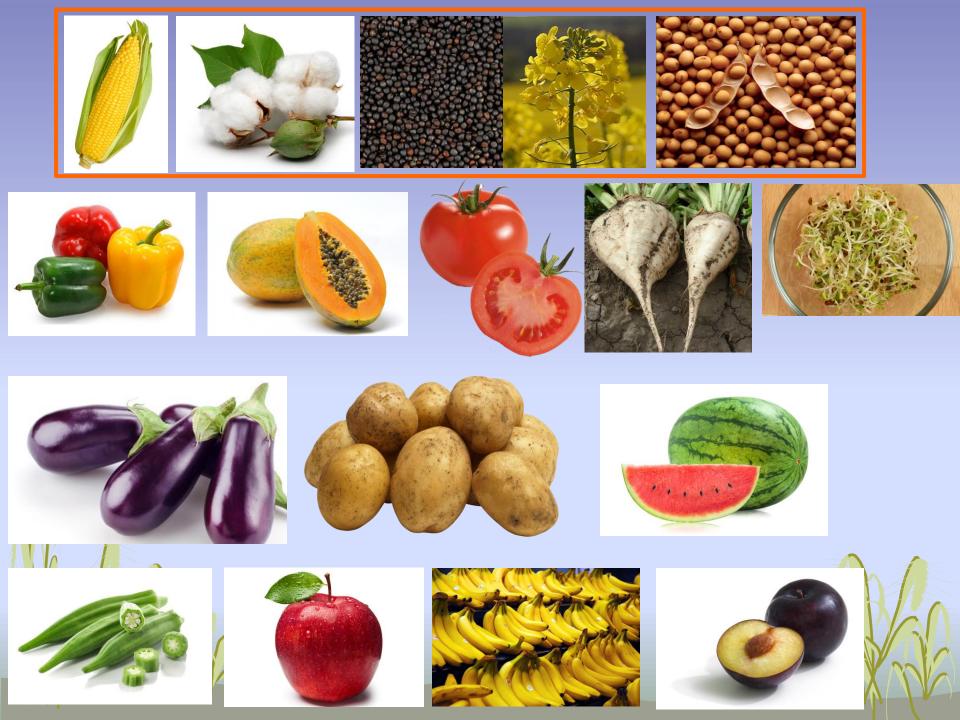

GM plant development


Product Gen concept discov	Evaluation	Event selection	Variety development	Regulatory process	Field production	Market
Choice of genes/proteins	Agronom assessme		Character gene proc comparat		Postmark assessme	
 Source Initial molecular characterization History of safe us Mode of action 	 Greenhou Agronom performa Phenotyp of events Event sele (<1%) 	nic Ince Dic screening	 Toxicity Allergenic Nutrition Composit Environm Further m characteri 	ional analysis ent olecular	 Postmark surveillar Suppleme food/feed as needee 	ice ental d studies,

Annu. Rev. Plant Biol. 2014. 65:769-90

	Discovery Gene/trait identification	Phase 1 Proof of concept	Phase 2 Early development	Phase 3 Advanced development	Phase 4 Prelaunch
Average duration	54 months	54 months 27 months		37 months	49 months
Average cost	USD 31 million	USD 28.3 million	USD 13.6 million	USD 45.9 million	USD 17.2 million
Key activity	 High-throughput screening Model crop testing 	• Gene optimization • Crop transformation	 Trait development Preregulatory data Large-scale transformation 	 Trait integration Field testing Regulatory data generation Product development 	 Regulatory submissior Seed bulk-up Premarketing Product development
	Discovery and collaborative partners			Field te Product Regulat	development ory data ory submission
	Thousands of ge	enes are often tested	A few genes are adva optimization	ucts combine vector d breeding stacks	
igure 1					

Overview of the development process of a genetically engineered crop, including activities, durations of those activities, and costs. Durations and costs are industry averages (60). Because various activities overlap, the cumulative total of each phase does not reflect the actual duration of the overall research and development process.



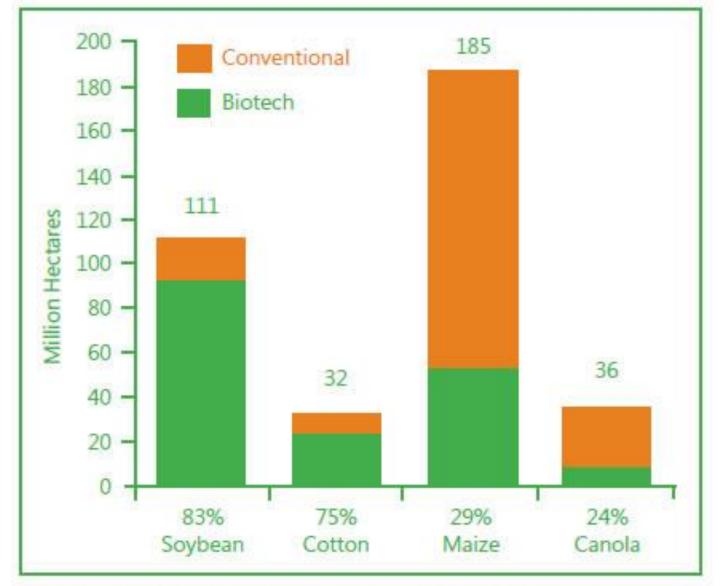
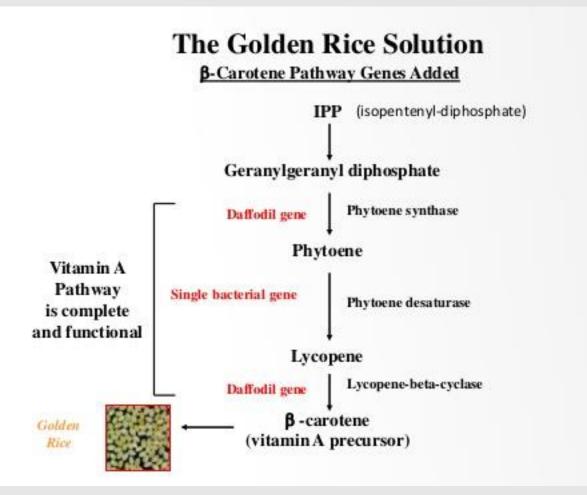


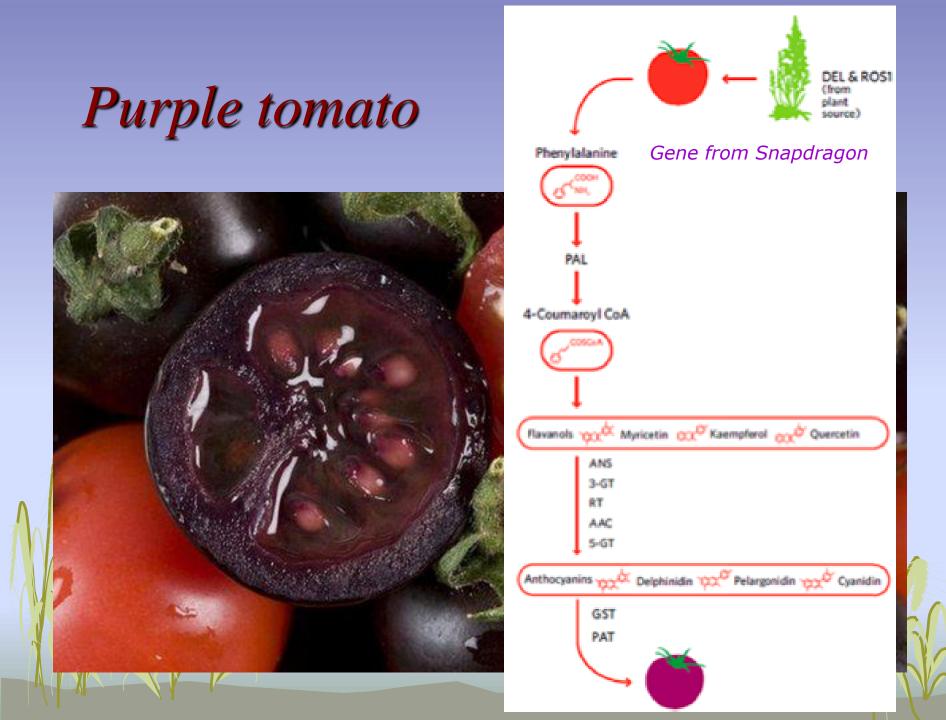
Figure 2. Global Area of Biotech Crops, 1996 to 2015: Industrial and Developing Countries (Million Hectares)

Source: Clive James, 2015.

Figure 1. Global Area of Biotech Crops, 1996 to 2015 (million hectares). Source: Clive James, 2015.

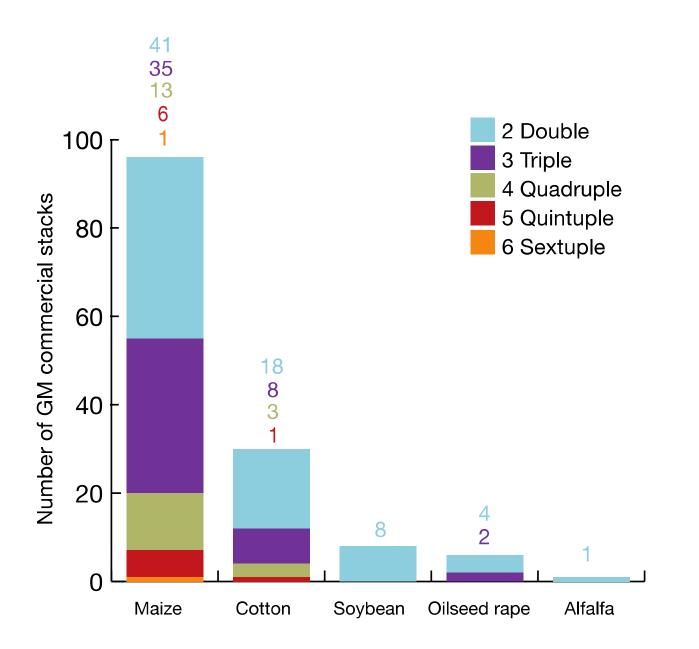

Figure 3. Biotech Crop Area as % of Global Area of Principal Crops, 2015 (Million Hectares)

Global Hectarages Data for 2015 (FAO, 2013) Source: Compiled by Clive James, 2015.


Table 1 Overview of the global pipeline of GM crops 2014^a

Сгор				Type of traits				
	Commercial	Precommercial	Regulatory	Advanced development	Total events	Agronomic	Agronomic + quality	Quality
Cotton	16	6	3	5	30	29	0	0
Maize	15	8	1	6	30	28	0	2
Soybeans	5	10	4	12	31	27	2	2
OSR (oil seed rape)	3	9	0	8	20	16	0	4
Fruits (tree)	2	2	2	4	10	7	0	3
Vegetable	3	0	2	6	11	9	0	2
Alfalfa	2	0	1	0	3	2	0	1
Rice	1	4	1	17	23	18	0	5
Industrial crops	1	1	13	5	20	16	0	4
Sugar beet	1	1	0	1	3	3	0	0
Potato	0	10	11	2	23	12	0	11
Sugarcane	0	1	1	3	5	5	0	3
Leguminous crops	0	1	0	4	5	3	0	0
Cereals (others)	0	0	3	3	6	5	0	1
Fruits (ground)	0	0	1	1	2	3	1	0
Total	49	53	43	77	222	N.D.	N.D.	N.D.

Golden rice



22

Traits

- Improve shelf life
- Improve nutrition
- Stress resistance
- Herbicide resistance
- Pathogen resistance
- Production of biofuels
- Production of useful by products (drugs, antigens, materials, bioremediation)

IN FOCUS NEWS

Gene-edited CRISPR mushroom escapes US regulation

A fungus engineered using CRISPR-Cas9 can be cultivated and sold without oversight.

BY EMILY WALTZ

he US Department of Agriculture (USDA) will not regulate a mushroom that has been genetically modified with the gene-editing tool CRISPR-Cas9, the agency has confirmed. The long-awaited decision means that the mushroom can be cultivated and sold without passing through the agency's regulatory process - making it the first CRISPR-edited organism to receive a green light from the US government.

"The research community will be very happy with the news," says Caixia Gao, a plant biologist at the Chinese Academy of Sciences Institute of Genetics and Developmental Biology in Beijing, who was not involved in developing the mushroom. "I am confident we'll see more gene-edited crops falling outside of regulatory authority."

Yinong Yang, a plant pathologist at Pennsylvania State University (Penn State) in University Park, engineered the fungus - the common white button mushroom (Agaricus bisporus) — to resist browning. The effect is achieved by targeting the family of genes that encodes polyphenol oxidase (PPO), an enzyme that causes browning. By deleting just a handful of base pairs in the mushroom's genome, Yang knocked out one of six PPO genes official. "They were very excited," Yang says: - reducing the enzyme's activity by 30%.

AGENCY RULES

The mushroom is one of about 30 genetically modified organisms (GMOs) to sidestep the USDA's regulatory system in the past 5 years. In each case, the agency's Animal and Plant Health Inspection Service (APHIS) has said that the organisms -mostly plants - do not qualify as something that the agency must regulate, (Once a crop passes the USDA reviews, it may still undergo a voluntary review by the US Food and Drug Administration.)

Several of the plants that bypassed the USDA were made using gene-editing techniques such as the zinc-finger nuclease (ZFN) and transcription activator-like effector nuclease (TALEN) systems. But until now, it was not clear whether the USDA would give the same pass to organisms engineered with science's hottest tool, CRISPR-Cas9.

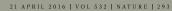
Yang first presented the crop to a small roup of USDA regulators in October 2015, after being encouraged to do so by an APHIS old tools.

The common white button mushroom (Agaricus bisporus) has been modified to resist browning.

"There was certainly interest and a positive feeling" at the meetings. He followed up with an official letter of enquiry to the agency later that month.

The USDA's answer came this week. "APHIS button mushrooms as described in your October 30, 2015 letter to be regulated," the agency wrote to Yang on

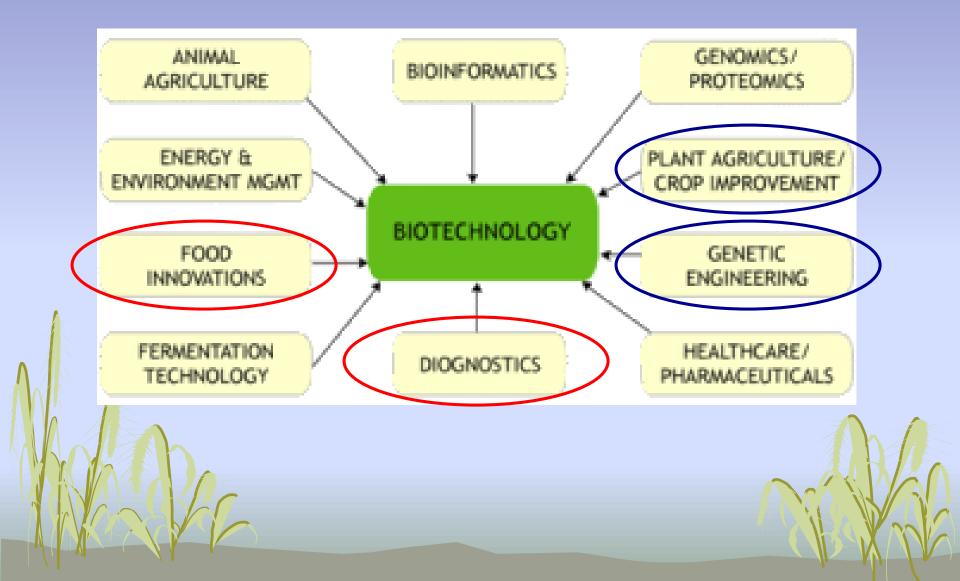
"I am confident 13 April. we'll see more Yang's mushroom gene-edited did not trigger USDA crops falling oversight because outside of it does not contain regulatory foreign DNA from authority." 'plant pests' such as viruses or bacteria.


Such organisms were necessary for genetically modifying plants and fungi in the 1980s and 1990s, when the US government develnewer gene-editing techniques that do not involve plant pests are quickly supplanting the

The United States is revamping its rules for regulating GMOs, which collectively are known as the Coordinated Framework for Regulation of Biotechnology. To that end, the US National Academies of Sciences, Engineering and Medicine have convened a committee does not consider CRISPR/Cas9-edited white that is charged with predicting what advances will be made in biotechnology products over the next five to ten years. It will hold its first meeting on 18 April.

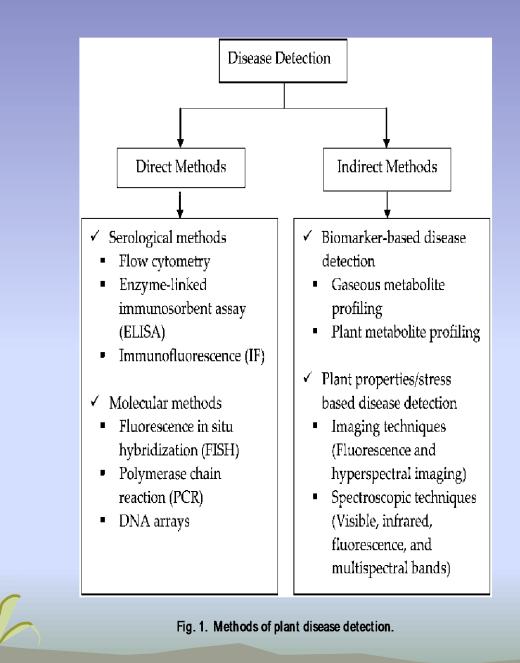
In the meantime, Yang is mulling over whether to start a company to commercialize his modified mushroom. Fruits and vegetables that resist browning are valuable because they keep their colour longer when sliced, which lengthens their shelf life. In the past 18 months, biotech companies have commercialized genetically engineered non-browning apples and potatoes.

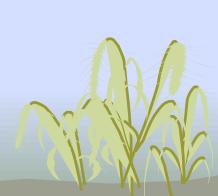
"I need to talk to my dean about that. We'll have to see what the university wants to do oped its framework for regulating GMOs. But next," says Yang about the prospect of bringing his mushroom to market. But he notes that in September 2015, Penn State filed a provisional patent application on the technology.


- **Button mushroom**
- **CRISPR**
- **Polyphenol oxidase** (PPO)
- **Resist browning**
- **US regulation**

The techniques under evaluation of US and European Commission :

- Site-Directed Nucleases (SDN) including Zinc finger nuclease technology, CRISPR and TALENs
- Oligonucleotide-directed mutagenesis
- RNA interference (RNAi)*
- Cisgenesis
- Intragenesis
- Grafting
- Agro-infiltration
- **RNA-dependent** DNA methylation
 - Reverse breeding


http://gmOgeyeficited&yproject.org/FAQ/how-are-governments-regulating-crispr-and-new-breeding-technologies-np. http://beyond-gm.org/gmo-or-gm-no-how-will-the-eu-regulate-new-plant-breeding-technologies/



Diagnosis

- Detect the presence of pathogens, contaminants on the plants and on the fruits/vegetable using molecular techniques
- Testing of GM materials
- RT-PCR, real time PCR, hybridisation
- Antisera
- Using minute amount
- Standardisation of the plantation and products

3

Table 1

Examples of some studies on plant disease detection using molecular techniques.

Plant/Trees	Pathogen	Туре	Molecular method	Reference
Grapevine	Xylella fastidiosa	Bacteria	PCR, ELISA	Minsavage et al. (1994)
Onion	Sclerotium cepivorum	Fungi	PCR	Anwar Haq et al. (2003)
Olive	Pseudomonas savastanoi pv. savastanoi.	Bacteria	PCR, Hybridization	Bertolini et al. (2003)
Sweet orange	Candidatus Liberibacter asiaticus.	Bacteria	PCR	Das (2004)
Sweet orange	Candidatus Liberibacter asiaticus, Ca. L. americanus, Ca. L. africanus	Bacteria	PCR	Teixeira et al. (2005)
Citrus	Candidatus Liberibacter	Bacteria	PCR	Li et al. (2006)
Citrus	Xylella fastidiosa, Methylobacterium mesophilicum	Bacteria	PCR	Lacava et al. (2006)
Citrus	Citrus tristeza virus	Virus	PCR, ELISA	Saponari et al. (2008)
Sweet orange	Candidatus Liberibacter asiaticus	Bacteria	Isothermal, chimeric primer-initiated amplification of nucleic acids + cycling probe technology	Urasaki et al. (2008)
Rice	Burkholderia glumae	Bacteria	Fluorescence PCR	Fang et al. (2009)
Potato	Candidatus Liberibacter solanacearum	Bacteria	PCR	Li et al. (2009a)
Citrus	Citrus leaf blotch virus	Virus	PCR	Ruiz-Ruiz et al. (2009)
Tomato	Pepino mosaic virus	Virus	PCR, ELISA	Gutiérrez-Aguirre et al. (2009)
Almond	Candidatus Phytoplasma prunorum	Bacteria	PCR	Yvon et al. (2009)

BioMed Research International

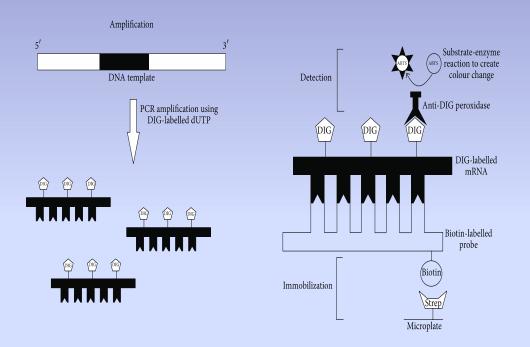


FIGURE 1: Illustration of the 3-step PCR-ELISA method: (i) amplification of the gene of interest using PCR in the presence of DIG-dUTP, which is then bound to specific probes, (ii) immobilization of the gene of interest to the microplate through strong affinity of avidin-biotin interaction, followed by (iii) detection of biotinylated DNA using an anti-DIG-peroxidase conjugate with substrate ABTS to form a blue-green color reaction that is both visible and measured using a spectrophotometer.

Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 653014, 6 pages http://dx.doi.org/10.1155/2014/653014

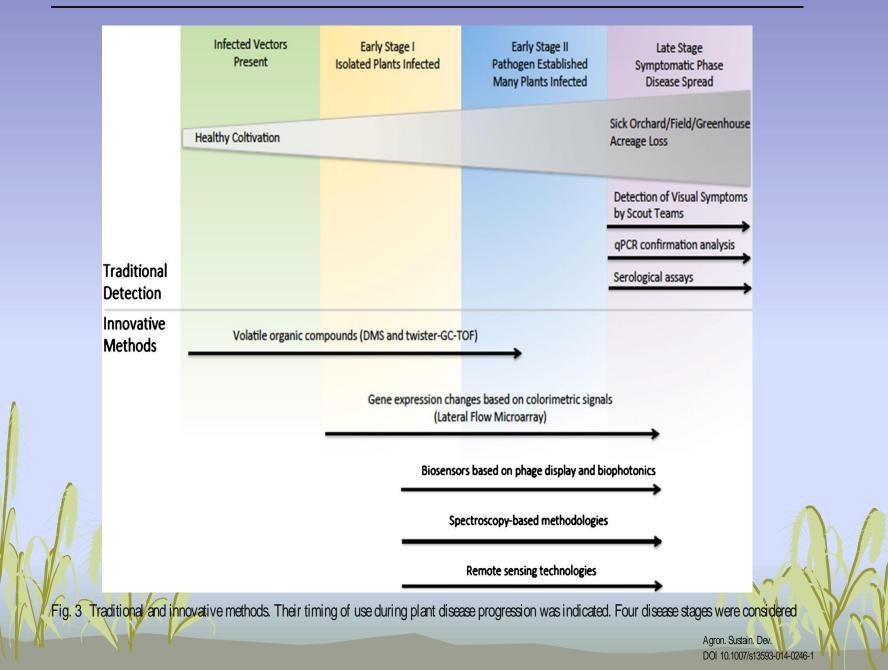

2

TABLE 1: Comparisons between 3 different detection methods; conventional F	PCR with agarose gel electrophoresis, PCR-ELIS	A and oPCR.
· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·

Comparison	Conventional PCR	PCR-ELISA	qPCR
Equipment required	Standard laboratory equipment	Standard laboratory equipment	Requires fluorescence detection instrument
Reagent costs	Low	Moderate	Costly
Detection limit	1–10 ng/µL	$0.01\mathrm{ng}/\mu\mathrm{L}$	$0.25 \text{ pg}/\mu\text{L}$
Quantitative ability	Not quantitative	Semi-quantitative	Quantitative

Hindawi Publishing Corporation BioMed Research International Volume 2014; Article ID 653014, 6 pages http://dx.doi.org/10.1155/2014/653014

F. Martinelli et al.

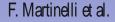
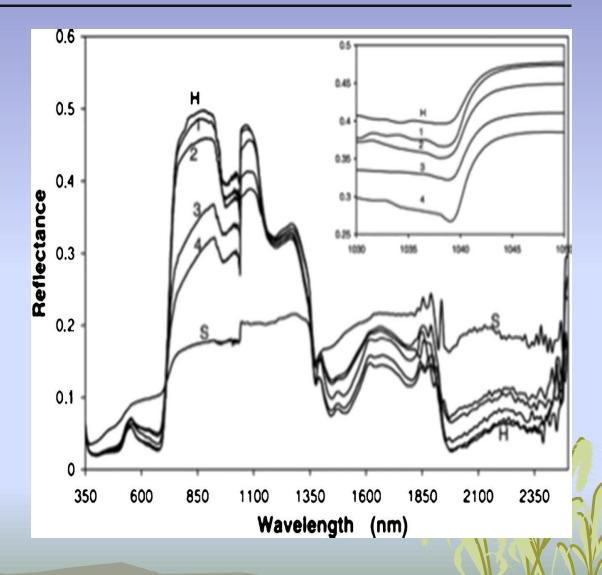
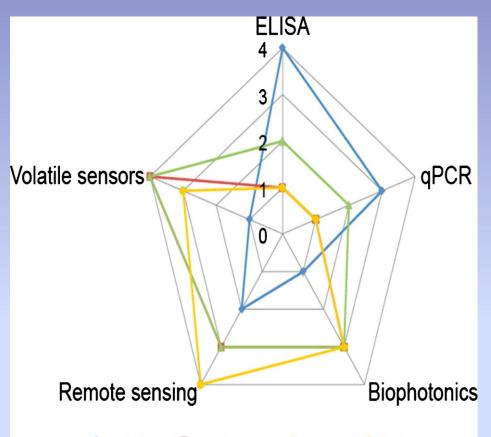




Fig. 4 Field reflectance spectra for healthy tomatoes plants (H) and plants infected with late blight disease increasing severity (from 1 to 4). S is the average spectrum for soil. The insert is an enlarged view of the abrupt changes at approximately 1,040 nm (from Zhang et al. 2003) (courtesy of the International Journal of Applied Earth Observation and Geoinformation, edited by Elsevier)

Availability — Detection Stage

-----Rapidity -----Spatialization

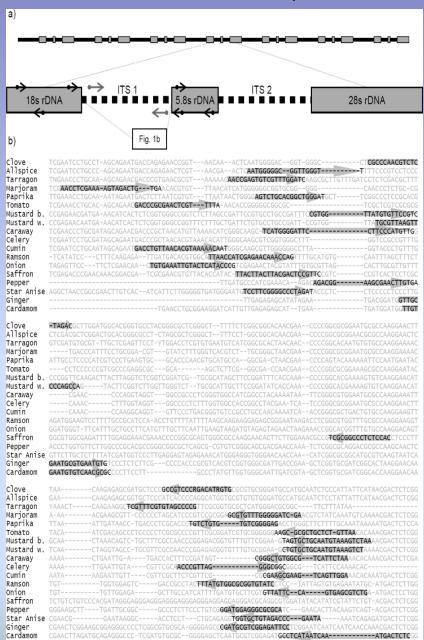
Fig. 7 Comparison of methods for plant disease detection (PDD). The qualitative scales indicate: 1 poor, 2 fair, 3 good, and 4 very good. The categories evaluate individual techniques with respect to: (i) Availability — ease of use, availability of equipment, and cost; (ii) detection stage— when infections can be detected (4 infected vectors present, 3 isolated infected plants, 2 many infected plants, and 1 symptomatic stage disease has spread over the cultivated area); (iii) speed—total time required

between collection of field data and the delivery of results (thus includes sample collection, preparation, and testing); (iv) spazialization—the potential to spatialize results (4 input data already carried out in a spatialized dimension, 3 data easily spatializable, 2 data difficult to spatialize, and 1 data not subject to spatialization); and (v) reliability—effective accuracy of results

Adulteration detection

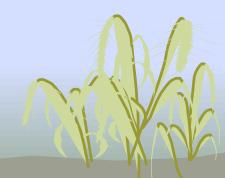
- Trade food and agricultural commodities
- Black pepper, chilli, turmeric
- Destroy reputation and trade
- DNA based techniques

Commodity	Commodity Adulterants		
,	Chemical/earthy material	Biological	
Black pepper berries <i>Piper nigrum</i>)	mineral oil	Dried papaya seed (Carica papaya); wild Piper Spp. (P. attenuatum and P. galeatum); fruits of Lantana camara and Embelia ribes; seeds of Mirabilis jalapa; berries of Schinus molle; exhausted black pepper; light berries, stems and chaff of black pepper.	
Black pepper powder	Dye	Powdered papaya seed; wild Piper berries; Lantana camara; Embelia ribes; Mirabilis jalapa seeds; Schinus molle berries; exhausted black pepper and light berries; starch from cheaper source	
Chilli fruits (Capsicum annuum)	Dyes, mineral oil	-	
Chilli powder	Dye- coal tar red, sudan red, para red; vanilyl-n-nonamide; Mineral oil; talc powder; brick powder; salt powder.	Powdered fruits of 'Choti ber' (Ziziphus nummularia); red beet pulp; almond shell dust; extra amounts of bleached pericarp, seeds, calyx, and peduncle of chilli; starch of cheap origin; tomato wastes.	
(Turmeric power. Curcuma longa)	Dye-Metanil Yellow, Orange II lead chromate; chalk powder; yellow soap stone powder.	Wild Curcuma spp- C. zedoaria Rosc or 'yellow shotti' syn. C. xanthorrhiza Roxb. ('Manjakua') or C. malabarica; starch from cheaper source; saw dust.	


Table 2. Common adulterants in some of the major traded spices

Dhanya and Sasikumar, 2010

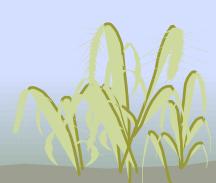
Table. 1. Adulterant/contaminant detection and authenticity assessment of plant derived food and agricultural commodities using DNA based techniques.


Application	Technique	Target gene	Reference
Detection of cashew husk (Anacardium occidentale L.) adulteration in tea [Camellia sinensis (L.) samples	Species-specific PCR	ITS of 5S rRNA	<mark>(</mark> 92)
Differentiation of 'Arabica' and 'Robusta' coffee beans	PCR-RFLP	chloroplastic genome	(93)
Detection of rhubarb yogurt in raspberry yogurt	PCR, sequencing	chloroplast rbcL	(51)
Detection of mei (Prunus mume) and plum (Prunus salicina) adulteration in preserved fruit products	Specific PCR	Ribosomal ITS1	(95)
Authenticity testing of raw rice materials in rice- based food product	SSR	Microsattelite DNA	(57)

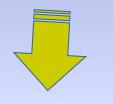
J. Agric. Food Chem., Vol. 59, No. 2, 2011 515

Article

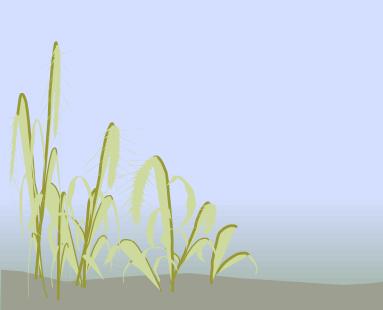
Figure 1. rDNA sequences and primer binding sites. (a) Gray boxes: rDNA genes (18s, 5.8s, and 28s), dotted lines ITS 1 and 2; arrows: primer binding sites (gray, specific; black, universal). (b) Sequence alignment of ITS1 created with ClustalX v. 2.0.9 (20) with primer binding sites, Gray arrows with black font: primer binding sites. Reverse primer binding sites for allspice and celery are located in ITS2; they are not shown in b.

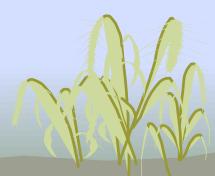


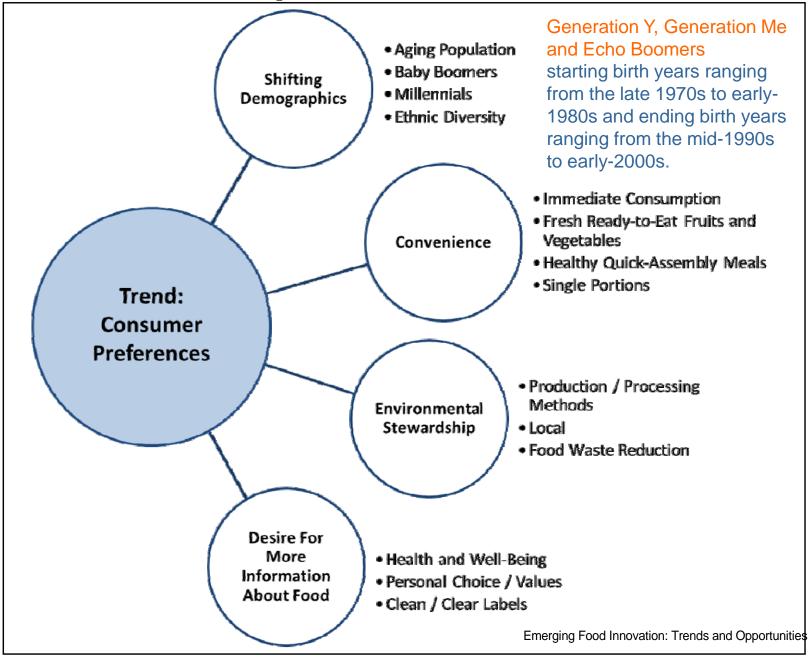
	forward primer $5' \rightarrow 3'$			
spice	reverse primer 5'→3'	length (bp)	accession ^a	abbreviatio
allspice ^b (<i>P. dioica</i>)	AATGGGGGGCGGTTGGGTT	333	AM234081	All
	CCCTGGCCGTGGCTTC ^c		,	
black mustard ^b (<i>Brassica nigra</i>)	CGTGGTTATGTGTTCCGTC	184	DQ340645	MuB
· · · · ·	TTAGACTTTACATTGCAGCACTA			
caraway ^b (<i>C. carvi</i>)	GGGATTCCTTCCCATGTTG	151	AF077878	Car
	TTAGAATGACGCCACAGCC			
cardamom (E. cardamomum)	TTGTGAATGTGTCAACGCGC	163	GQ166167	Card
	GAGAGTCATTTGATTATGAGGC			
celery ^b (Apium graveolens)	ACCCGTTAGGGGCGGC	\sim 370 c	U30552.1	Cel
	CTCCTTAGATGACACAATTACG ^c		U30553.1 ^c	
clove (S. aromaticum)	CGCCCAACGTCTCTAGAC	142	EF026622	Clo
	CACCATGTCTGGGACGGC			
cumin ^b (<i>Cuminum cyminum</i>)	GACCTGTTAACACGTAAAAACAAT	190	CCU78362	Cum
· · · ·	TCCAACTGACTTCGCTTCG			
ginger ^b (Zingiber officinale)	GTTGCGAATGCGTGAATGTG	157	DQ064590	Gin
	GGAATCTCCGACGCATCG			
marjoram (<i>Origanum majorana</i>)	AACCTCGAAAAGTAGACTGTGA	207	GQ166166	Мај
	TCGATCCCCCAAACACGC			
onion ^b (<i>Allium cepa</i>)	TGTGAAATTGTACTCATACCCG	215	AJ411944	Oni
× • • /	CAGACGCTCACTGGAATAAC			
paprika (<i>Capsicum annuum</i>)	AGTCTGCACGGCTGGGAT	169	GQ166165	Pap
	CTCCCCGACACACAGACA			
pepper ^b (<i>Piper nigrum</i>)	AGACGGAAGCGAACTTGTGA	164	EF060077	Рер
	TGCGCGCCCTCCATCC			
ramson ^b (A. ursinum)	TTAACCATCGAGAACAAACCAG	184	AJ412744	Ram
· · · · ·	GATACACCGCGCCACATAAA			
saffron ^b (Crocus sativus)	TTACTTACTTACGACTCCGTTC	128	DQ094185	Saf
	GTGGAGAGGGCCGCGA			
star anise ^b (<i>I. verum</i>)	TCCTTCGGGGCCCTAGAT	182	AF163724	StA
	TATTCGGGTCTACAGCACCA			
tarragon ^b (A. dracunculus)	AACCGAGTGTCGTTTGGATC	173	AF045401	Tarr
	CGGGGCTACACGAAACGA			
tomato ^b (Lycopersicon esculentum)	GACCCGCGAACTCGTTTTA	196	AF244747	Tom
	TTAACAGAGCAGCGCGCTT			
white mustard ^b (Sinapis alba)	TGCGTTAAGTTCCCAGCCA	169	AY722486	MuW
	AGACTTTACATTGCAGCACAG			

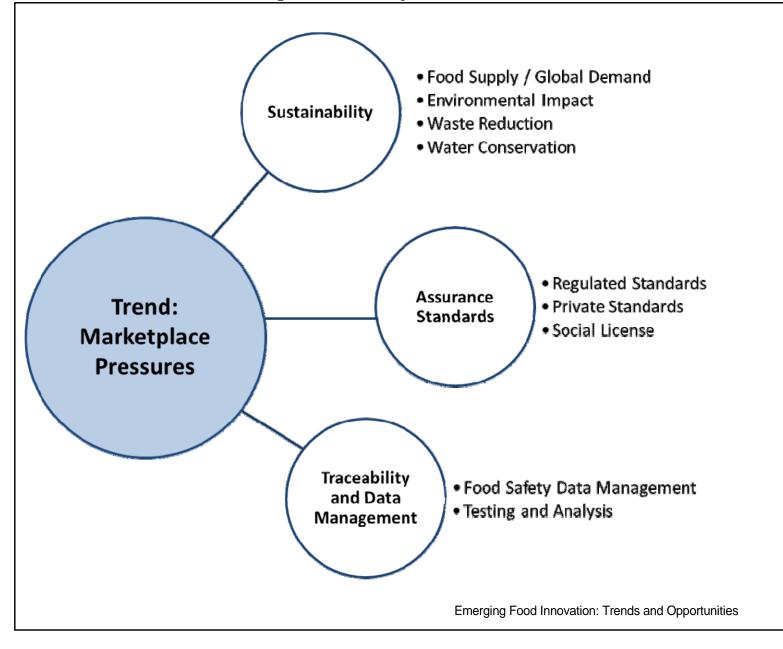

 Table 3.
 Specific Primer Sets

[#]Accession number of sequence used for primer design. ^b Primer sets used to optimize PCR conditions. ^c Reverse primer hybridizes in ITS2.









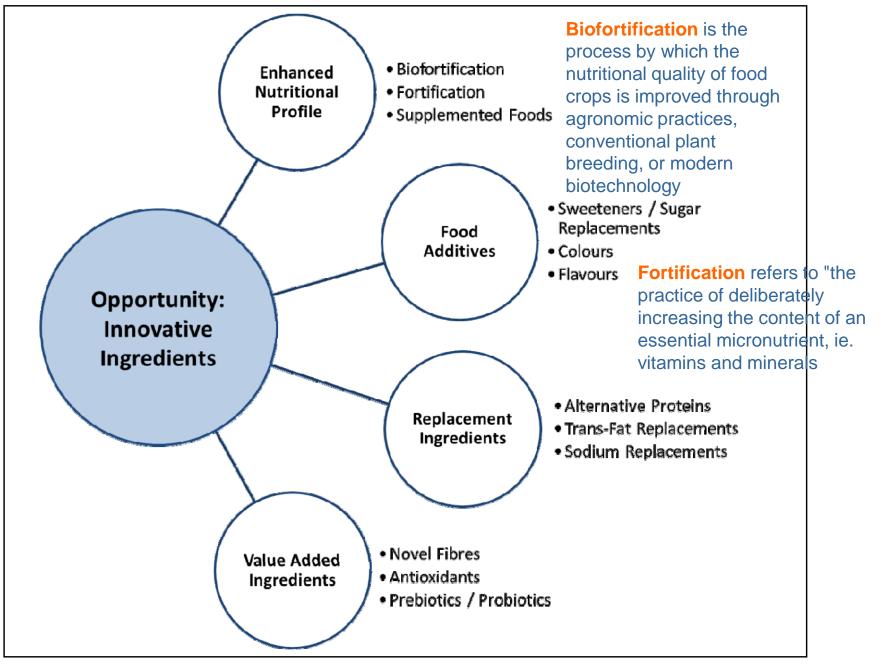

Figure 2. Consumer Preferences

Figure 3. Marketplace Pressures

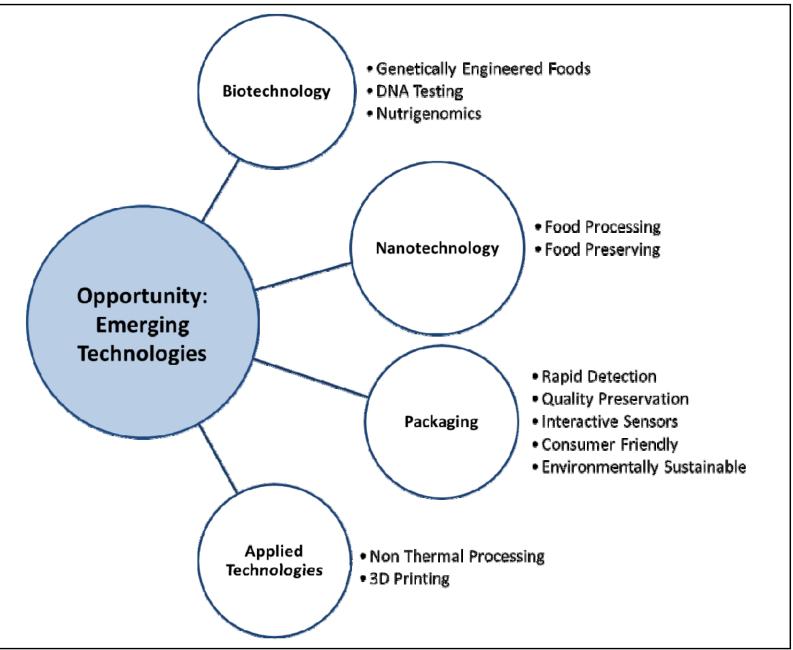


Figure 4. Innovative Ingredients

Emerging Food Innovation: Trends and Opportunities

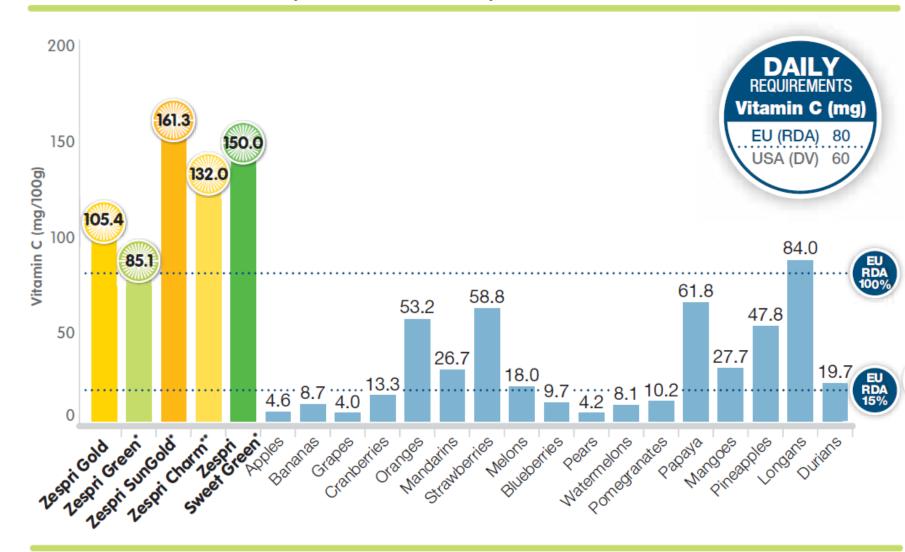
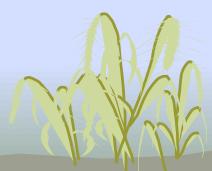

Figure 5. Emerging Technologies

Figure 1. Trends and Opportunities for the Food Processing Industry

Vitamin C content of Zespri Kiwifruit – compared with other common fruit

Data Sources: USDA Nutrient Database 2012 (Release 25)

* New Zealand FOODfiles 2012 Version 01


** Zespri International Limited

http://www.zespri.com/nutritious/vitamin-c

What do we want from biotechnology to reduce postharvest losses

- Premium line
 - tissue culture, molecular marker, genetic engineering
- Maintenance of premium lines
 - tissue culture, molecular markers
 - **Detection of impurity**
 - diagnosis

More...

- The means to have premium lines with resist to abiotic and biotic stress
- Use less resources (water, fertilizer etc)
- Produce less waste
- Future (and better) food

THANK YOU FOR YOUR ATTENTION