Management of Plant-parasitic Nematodes (with the emphasis on the practices in Thailand)

Buncha Chinnasri and Danny Coyne

35th International Vegetable Training Course Module 1: Vegetables: from Seed to Harvest

Friday 23 September 2016

Principles of Plant-parasitic Nematode Management

1. <u>Before planting</u>, to reduce initial nematode population

"Very Important"

- Solarization, soil steaming, hot water, fallow, flooding
- Pre-planting nematicides such as 1.3-Dichloropropene, metham sodium, dazomet
- Growing marigold, or crotalaria

2. <u>During planting</u>, to reduce rate of population increase

 Post plant nematicides such as systemic nematicides (oxamyl, femamiphos, carbofuran)

- Biological control such as using fungi Paecilomyces, the bacteria (Pasturia penetrans)

Solarization

- Using the polyethylene sheets to cover the moist soil

- Strong sunlight can kill nematodes and other soil microorganisms
- Strong sunlight can change the physical, biochemical and, biological properties of soil

Increasing and enhancing the availability of nitrogen in soil

- Soil clods need to be broken up
- Cover the soil with clear plastic tarp and bury the edges of the plastic
- Cover the soil for 4-6 weeks
- Disinfected zone is usually 6-8 inches deep
- Work best in the summer months

- Hot vapor is released into the soil through the pipes built about 20-40 cm beneath the soil surface
- However, expensive and not suitable for low valued crops

- Applicable to control nematodes in bulbs or ginger rhizome or in other planting materials
- Most nematode metabolisms cease at the temperature of 50 C
- Hot water (at too high temperatures) may cause negative effects or stop the spout germination
- In ginger rhizomes, hot water at 50 C for 30 minutes can kill nematodes in ginger rhizomes without causing negative effects to ginger.

Hot water treatment

50 C for 30 minutes

- Nematodes need plants (hosts) for food to survive
- Without plants, nematodes starve and die
- However, a 6 month fallow is needed (at least).
 Eradication of weeds (voluntary plants) in soil is also important because a lot of weeds are hosts of nematodes
- Fallow is effectively used to control nematode juveniles, but not to nematode eggs and cysts.

Some of Thai weeds that are hosts of root-knot nematodes

Red flame ivy *Hemigraphis alternata* ACANTHACEAE

Prickly chaff-flower Achyranthes aspera L. AMARANTHACEAE

Little iron weed Vernonia cinerea (L.) Less. COMPOSITAE

Nut grass, Coco grass Cyperus rotundus L. CYPERACEAE

Some of Thai weeds that are hosts of root-knot nematodes

Giant sensitive plant *Mimosa invisa* Mart. var. *inermis* Adelb.

LEGUMINOSAE-MIMOSOIDEAE Common garden purslane Portulaca oleracea L.

PORTULACACEAE

Kradum bai lek Borreria laevis (Lamk.)

RUBIACEAE

Flooding

- Normally, nematodes do not attack plants in flooded areas
- Low oxygen in flooded soil
- However, 12-22 months of flooding is needed. Not cost-effective and a lot of water is needed.
- The nematode *Hirschmanniella oryzae* can survive in flooded areas or in the water for long times.

Rice Nematode *Hirschmanniella oryzae* can live in the water or in flooded areas for long time

Before Planting

- Pre-planting nematicides such as 1.3-Dichloropropene, metham sodium, dazomet

Preplant nematicides

Common Nan	nes Chemical Group	LD50	Year	Trade Names	Formulation	Distributor
1.3-Dichloro propene	Halogenated hydrocarbon	150	1956	Telone II Telobe EC	Liquid Liquid	Dow Agro Sciences
Metham Sodium	Methyl isothiocyanate liberator	77-220	1951	Vapam, Vapam HL	Liquid	AmVac Chemical
Dazomet	Methyl isothiocyanate liberator	77-220	1897	Basamid	Microgranule	BASF

The application of pre-plant nematicides Such as 1.3-Dichloropropene, metham sodium, dazomet

Preplanting nematicides

- Disadvantages

- Dangerous, highly toxic, easily vaporized
- Need polyethylene sheets, costly
- Not good for big planting areas, costly
- Advantages
 - Highly effective
 - Even better than using post plant nematicides because pre-planting nematicides preclude nematode infection into the plants

Using Marigold or crotalaria

- Marigold (*Tagetes* spp.) produces the chemical alpha-tertienyl

-The chemical property is to kill nematodes

Marigold

Crotalaria

เกษตรกรทำการเตรียมดินเพื่อหว่านเมล็ดปอเทือง

ภาพปอเพื่องอายุ 20 วัน ในแปลงเกษตรกรที่เข้าร่วมโครงการ

ภาพปอเพื่องอายุ 20 วัน ในแปลงเกษตรกรที่เข้าร่วมโครงการ

Crotalaria

ภาพปอเพื่องที่อายุประมาณ 30 วัน บนแปลงเกษตรกรผู้ปลูกพริก

เกษตรกรทำการโถกลบปอเทืองลงในแปลงที่อายุ 45 วัน

ภาพเกษตรกรผู้เข้าร่วมโครงการกับแปลงปลูกปอเทือง

The Benefits of Planting Crotalaria

- 1. Crotalaria is a poor host of nematodes. Therefore, nematode population in soil is reduced when crotalaria is planted.
- 2. Fixing nitrogen from the air to the soil (getting free nitrogen)
- 3. Increasing organic matter in the soil (more soil nutrients and good soil texture)

During planting

- Post plant nematicides such as systemic nematicides (oxamyl, femamiphos, carbofuran)
- Biological control such as using fungi Paecilomyces, the bacteria (Pasturia penetrans)

Postplant Nematicides

Common Nam	es Chemical Group	LD50	Year	Trade Names	Formulation	Distributors
fenamiphos	Organophosphorus	6	1967	Nemacur 15G Nemacaur 3	Microgranule Liquid	Bayer CropScience
cadusafos	Organophosphorus	37	1982	Rugby 200 CS Rugby 10G	Liquid Microgranules	FMC Corporation
ethoprophos	Organophophorus	62	1966	Mocap 10G Mocap EC	Microgranules Liquid	Bayer CropScience
fosthiazate	Organophosphorus	73	199 2	Nemathorin 10G	Microgranules	Syngenta
aldicarb	Oxime carbamate	0.93	1965	Temik 10G	Microgranule	Bayer Crop
				Temik 15G	Microgranule	Science
oxamyl	Oxime carbamate	3.1	1974	Vydate 10G Vydate L	Microgranule Liquid	Du pont
carbofuran	Carbamate	8	1965	Furadan 15G Furadan 4F	Microgranule Liquid	FMC Corporation

Examples of Nematicides Made from Natural Products

Common Nan	nes Distributor	Raw Products	Active Ingredients	Control
DragonFire	Poulenger USA	Sesame seed oil	Aldehydes, ketones,	Nematodes
		Sesame seed meal	linolenic acids	in grasses
Neo-trol	Bramic Industries	Sesame stalk	Aldehydes, ketones,	Nematodes
	Australia		linolenic acids	in grasses
Crop-Guard	IIIovo Sugar South Africa	Woody biomass	2-Fufuraldehyde	-
Clandosan 61	8 Igene Biotechnology	Crabs and shrimp shells	Chitin and Urea	-
	USA		(increasing microorganism	S
			to kill nematodes)	
Ditera	Valent BioSciences	Myrothecium verrucaria	The extract derived from	Approved by
	USA		fermented bacteria	EPA in 1997
Neem	Several companies	Neem	Azadirachtin	-
Nemate	from India			

Post plant nematicides

Advantages

- Highly effective but less than "preplant nematicides"
- The only way to kill nematodes inside plant tissues

Disadvantages

- Toxic residues in plants
- Expensive
- Most of them are banned, not available in the market

During planting:

- Biological control such as using fungi and bacteria

The fungi Dactylaria haptotyla produce adhesive knobs to catch nematodes

C. Barron

The fungi Arthrobotrys anchonin produce constricting rings to catch nematodes

The fungi *Verticillium chlamydosporium* eat eggs of root-knot nematodes

The fungi *Paecilomyces lilacinus* attack nematode eggs

The bacteria *Pasteuria penetrans* attack nematode cuticles

Biological Control of Nematodes by Fungi or Bacteria

Advantages

- Help reduce the application of toxic chemicals
- Less dangerous to human and environment (if used wisely)

Disadvantages

- Less stable and less effective in nature as compared to the laboratory
- The fungi Paecilomyces lilacinus attack human lungs
- High diversity of fungi and varied effectiveness between isolates

Case Studies of Nematode Control In Thailand

Nematodes firstly attack to roots then to tubers (50-60 days later)

Egg masses deposited on roots at early stage of infection

Potatoes infected by *Meloidogyne* (warty potatoes) are rejected by the factory

Pimple-like bumps on tubers

Meloidogyne incognita

Potato tubers cv. "Atlantic"

Brown spots (nematode females)

Females of *Meloidogyne* embedded in potato tubers

Vascular ring

Control Measures

- Rotating potato with maize, crotalaria, marigold

- Changing new planting areas

Using carbofuran or oxamyl

 Avoid growing potato on waterlogged soil or poorlydrained soil (more nematode infestation)

Chili in Thailand

- Planted all over the country
- For fresh and dried consumption in Thailand
- Nematode problem:

in the Northeastern Thailand

Wilt symptoms under water High temperature stresses

Yellow patches of stunted chili

Numerous galls observed Often roots rotten and decayed (non functional anymore)

Meloidogyne usually found associated with the fungi Fusarium oxysporum (Wilt disease)

- Almost all chili growers in Thailand face root-galling problems
- The problem is due to growing chili (same varieties) in the same growing areas for for than three years

- The growers buy (unclean) chili seedlings from local seedling producers

Nematode Problem in Chili in Thailand

Sri Saket province Ubon Ratchathani province - serious problem

Soil texture: Sandy soil

Sandy Ioam soil

!!!! Growing chili on the same areas
for more than 5 years

Effects of Sun Hemp (*Crotalaria juncea*) on population of root-knot nematodes in chili

Chili Yield (Second Season)

Sun Hemp (Crotalaria juncea)

- Incorporate into the soil 45 days after planting
- Suppress *Meloidogyne* population
- Help increase nutrients and organic matters in soil
- Increase yields of the second season chili by 2-3 times as compared to the non-incorporated

Mode of action: Sun Hemp (Crotalaria juncea)

- Non host or poor host
- Produce toxic compounds against nematodes
- Enhance nematode-trapping fungi in soil
- Also behave as green manure

Points of Consideration

- Best nematode control = preventive

Once nematodes in plants, it is difficult to rid them off and plant yields have already been affected

- Nematode infestation is usually in water-logged areas (alternate wet and dry fields)
- High soil moisture content = usually big problem

Wet conditions cause more nematode problems

Nematode resistance screening trial on tomato

Plots with high soil moisture as they were close to the irrigation furrows

Nematode problem is usually high in foothill

- Water in soil increases nematode activity
- Water running from uphill helps flush down nematodes to the base of the hill

Meloidogyne enterolobii Yang & Eisenback, 1983

- Recently discovered in Thailand (Jindapunnapat *et al.*, 2012)
- A tropical or subtropical species reported in Brazil, Venezuela, China, Cuba, Vietnam, USA etc.
- Ability to reproduce on *Mi-1* gene carrying tomatoes

Infected guava trees

Rotten roots (severe case!!!)

Conspicuous galls

M. enterolobii is more virulent than M. incognita on three different commercial tomato varieties

M. enterolobii

M. incognita

Chanakarn, 2015

M. incognita

M. enterolobii

M. enterolobii is more resistant than *M. incognita* to the Chemical NemaClear (Arcis:Altos Group)

NemaClear Concentrations (ppm)

Nathawut, 2015

A study on resistance screening of pepper lines against *M. enterolobii* in the greenhouse in Thailand

AVRDC Pepper lines

+1000 J2 *M.* enterolobii

Table 2: Host status of different pepper lines for *M. enterolobii*

Pepper	Gall Index	Egg	Shoot Weights	Root Weights	Status
Lines		Production	of plants	of plants infected	(Most Likely)
			infected with	with nematodes as	
			nematodes as	compared to non-	
			compared to	infected	
			non-infected		
PBC143	XXX	XX	Same	Increased	R
PBC456	XXX	XX	Increased	Increased	R
PBC495	XXX	XX	Same	Same	R
PBC518	XX	X	Increased	Increased	R (high)
PBC142	XXX	X	Same	Same	R (high)
AVPP0906	XX	XX	Decreased	Same	R
AVPP0831	XXXXX	X	Decreased	Increased	R
AVPP0717	XXXX	XXX	Decreased	Same	S
PBC1832	XXXX	X	Same	Same	R
C 05573	XXXXXX	XXXXXXX	Same	Increased	S (high)
AVPP0514	XXXXX	XXXXXX	Same	Same	Т
PBC1582	XXXXX	XXX	Same	Increased	S
PBC460	XXXXX	XXXXXX	Decreased	Same	S
PBC1583	XXXXX	XXX	Same	Same	Т
AVPP9705	XXXXX	XXX	Increased	Increased	S
AVPP0102	XXX	XXX	Decreased	Same	S
AVPP0201	XXXXX	XXXXXX	Same	Same	Т
AVPP0205	XXXX	XXXXXX	Decreased	Same	S
AVPP9602	XXXX	XXX	Decreased	Decreased	S

The number of "X" indicates the extent of gall and egg production R= Resistance, S = Susceptibility, T = Tolerance

Relatively Resistant Pepper Lines

Relatively Susceptible Pepper Lines

Relatively Tolerance Pepper Lines

Thank you very much