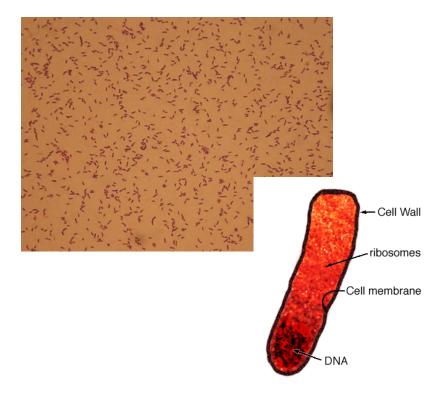
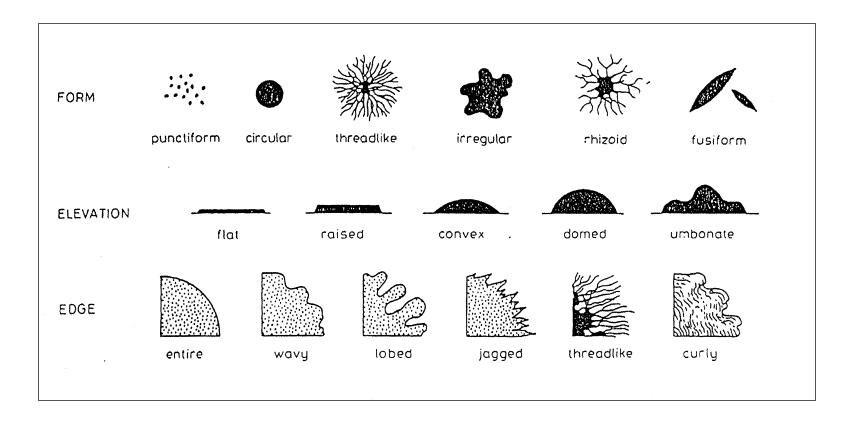
Plant Pathogenic Bacteria A Basic Guide to Identification

Fen Beed

Regional Director for East and Southeast Asia and Oceania



22nd September, 35th IVTC Module 1


Prokaryotes

Three invariant characteristics

- Cell membrane
- Cytoplasmic 70S ribosome
- Non-membranebound nucleoid

Bacterial colony morphology

- Prokaryotes are ubiquitous and physiologically diverse
- Occupy a wide range of ecological niches, active
 as autotrophs, obtaining energy from inorganic sources or light
 - as saprophytes, obtaining energy from the breakdown of complex organic material
 - as symbionts, living co-operatively with other organisms

- as parasites, attacking and often killing other living things. The parasites are relatively few in both kinds and numbers.

Taxonomic ranks

- **Genus:** A discrete related group of species. Strains usually have >30% DNA homology
- Species: A discrete taxonomic unit; several well defined phenotypic differences from related species. Strains usually have >70% DNA homology
- **Subspecies:** One or two well defined phenotypic differences from other subspecies
- **Biovar:** One or two minor phenotypic differences from other biovars
- Pathovar: Pathological varieties. Have distinct host specificity range for a plant species or genus, or distinct symptoms on the same host
- Race: Specificity / virulence for some, but not all, cultivars of a plant species. Based on host resistance genes and avirulence genes in the pathogen

Plant Bacterial Pathogens

- All within the domain Bacteria
- Occur worldwide
- Exploit all environments and affect all major plant groups, but favour warm, moist environments
- Fall within 3 major groups
 - Gram negative
 - Gram positive
 - Non-culturables

The main plant pathogenic genera

Gram -ve

- Acidovorax
- Agrobacterium
- Brenneria
- Burkholderia
- Dickeya
- Enterobacter
- Erwinia
- Pantoea
- Pseudomonas

- Pectobacterium
- Pseudomonas
- Ralstonia
- Xanthomonas

The main plant pathogenic genera

Gram +ve

- Arthrobacter
- Bacillus
- Clavibacter
- Curtobacterium
- Leifsonia
- Nocardia
- Rathayibacter
- Rhodococcus
- Streptomyces

- Non-culturables [Candidatus]
 - Liberobacters
 - Phytoplasmas
 - Spiroplasma

Characterisation and identification of bacteria

Various methods exist

- Host range
- Phenotypic [biochemical] properties
- Protein profiles
- Fatty acid profiles
- DNA homology and sequence data
- DNA fingerprints
- [A polyphasic approach to study]

Methods, processes and end-points [2]

Phytosanitary testing

- Pre-described test procedure for known crop / pest combinations only
- Limited need for wider inclusion of other pest knowledge; can be achieved by non-specialists
- Require specific, dedicated infrastructure
- Known outcome, with statistical confidence
- Primarily driven by EU directives

Methods, processes and end-points [3]

Identification of unknowns

- Receiving of plant / pest combinations of any type
- Need to be inclusive of all pest types [entomological, mycological, bacterial, viral]
- Requires expert knowledge, infrastructure and access to reliable information resources
- Driven by national demand for providing broad services in plant health as supports commercial interests

Methods, processes and end-points [4]

Research

- Responsive to demand
- Need to be inclusive of all pest types [entomological, mycological, bacterial, viral]
- Requires expert knowledge, infrastructure and access to reliable information resources
- Driven by national demand for providing broad services in plant health as supports commercial interests

Methods for bacterial identification

- Biochemical tests traditional methods
- Formatted biochemical tests
 - API strips
 - Biolog
- GC Fatty acid profiles MIDI system
- Serological immunological methods
- DNA methods
 - DNA homology
 - 16S rDNA
 - Fingerprinting

Biochemical tests

Biochemical tests – example 1

- Pantoea stewartii
 - Non-motile
 - Colonies do not show symplasmata or inclusion
 - Negative for production of H₂S from cysteine, acetone, phenylalanine deaminase, nitrate reductase and gelatinase
 - Acid is produced from melibiose; non-acid from dulcitol, maltose, rhamnose or starch

Biochemical tests – example 2

- Ralstonia solanacearum
 - Non-fluorescent pseudomonas with polar tuft flagella
 - Cells non-pigmented, but brown diffusible pigment often produced
 - PHB is accumulated
 - Levan not formed from sucrose
 - Gelatin hydrolysis weak
 - Starch and aesculin not hydrolysed
 - Nitrate reduced by nearly all strains; many produce gas [denitrifying]
 - No growth at 40C
 - Oxidase positive
 - Arginine dihydrolase negative
 - Most strains produce tyrosinase
 - Light or no growth in broth containing 2% NaCl; no growth at 40C
 - Carbon sources used for growth: acetate, aconitate, L. alanine, D-alanine, γaminobutyrate, asparagine, L-aspartate, benzoate, butyrate, citrate, fumarate, gluconate, D-glucose, L-glutamate, glycerol, L-histidine, β-hydroxybutyrate, αketoglutarate, L-malate, mucate. L-proline, proionate, pyruvate, saccharate, succinate, sucrose and trehalose

Dichotomous key – some key biochemical tests

Gram test [Gram –ve and +ve bacterium]

- Gram –ve
 - Anaerobic growth
 - Yellow colonies on YDC
 - Fluorescent pigment
 - Urease
 - Growth at 33C and 40C
 - Growth on D1M agar
 - Utilization of arginine and betaine

- Gram +ve
 - Endospores formed
 - Anaerobic growth
 - Ariel mycelium

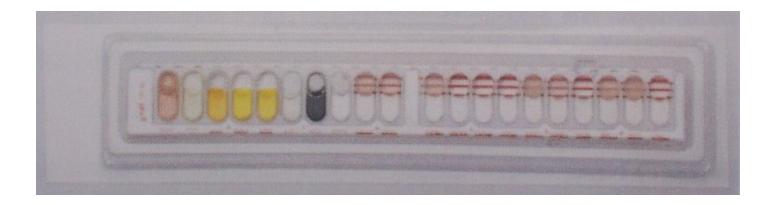
The LOPAT tests for fluorescent *Pseudomonads*

L	0	Ρ	Α	Т	Group	Example
+	-	-	-	+	la	P. syringae
-	-	-	-	+	lb	P. savastanoi
-	-	+	-	+	II	P. viridiflava
-	+	-	-	+		P. cichorii
+	+	+	+	-	IVa	P. marginalis
-	+	+	+	-	IVb	P. fluorescens complex
-	+	-	+	-	Va	P. tolaasii
+	+	-	+	-	Vb	P. fluorescens complex

Levan production / oxidase reaction / Potato Rot / Arginine dihydrolose production / tobacco hypersensitivity – LOPAT – p26 Phytobacteriology book

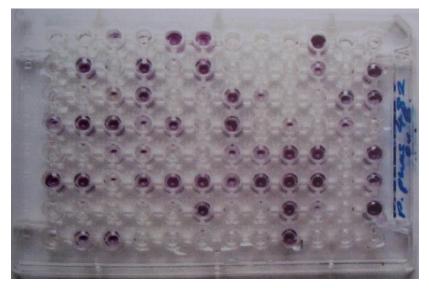
Biochemical tests

Advantages


- Is not requiring of expensive equipment and searchable data bases
- Limitations
 - Methods are many, some sequential and time consuming
 - Reagent list for tests is extensive and prepared media is to be aliquoted into many different formats
 - Many tests give variable strain specific results and some tests are unreliable
 - Technicians need to be very familiar with methods and competent in their use

Biochemical formatted platforms

- Takes the biochemical tests and places them on a more convenient format
- Two main commercial products
 - API strips [http://industry.biomerieux-usa.com/industry/food/api/index.htm]
 - Biolog [http://www.biolog.com/main.html]
- Results achieved within 48hrs
- Results [+ & -ve data] fed into library of described strains
- Similarity values on most likely identification
- Requires judgement over identifications presented



- Each well contains a different substrate
- Results are recorded as either a substrate colour change or as growth

The Biolog system

- The Biolog system presents an extended array of biochemical tests
- A positive result is seen as a purple colour change
- The plate can be read by eye or by a plate reader

Al	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
Water	a- cyclodextrin	dextrin	glycogen	tween 40	tween 80	N-acetyl-D- galactosamine	N-acetyl-D- glucosamine	adonitol	L- arabinose	arabitol	cellobiose
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	BII	B12
i-erythritol	D-fructose	L-fucose	D-galactose	gentiobiose	a-D-glucose	m-inositol	a-D-lactose	lactulose	maltose	D-mannitol	D-mannose
CI	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
D-melibiose	β-methyl D-glucoside	D-psicose	D-raffinose	L-rhamnose	D-sorbitol	sucrose	D-trehalose	turanose	xylitol	methyl pyruvate	mono-methyl succinate
DI	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
acetic acid	cis-aconitic acid	citric acid	formic acid	D-galactonic acid lactone	D- galacturonic acid	D-gluconic acid	D-glusaminic acid	D-glucuronic acid	a-hydroxy butyric acid	β-hydroxy butyric acid	γ-hydroxy butyric acid
El	E2	E3	E4	E5	E6	E7	E8	E9	E10	EII	E12
p-hydroxy phenylacetic acid	itaconic acid	α-keto butyric acid	α-keto glutaric acid	a-keto valeric acid	D, L- lactic acid	malonic acid	propionic acid	quinic acid	D-saccharic acid	sebacic acid	succinic acid
FI	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
bromo succinic acid	succinamic	glucunoramide	alaninamide	D-alanine	L-alanine	L-alanyl -glycine	L-asparagine	L-aspartic acid	L-glutamic acid	glycyl L- aspartic acid	glycyl L- glutamic acid
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
L-histidine	hydroxy L-proline	L-leucine	L-ornithine	L- phenylalanine	L-proline	L-pyroglutamic acid	D-serine	L-serine	L-threonine	D, L-carnitine	γ -amino butyric acid
HI	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
urocanic acid	inosine	uridine	thymidine	phenyl ethylamine	putrescine	2-amino ethanol	2,3- butanediol	glycerol	D, L- α- glycerol phosphate	glucose-1- phosphate	glucose- 6-phosphate

Biochemical formatted platforms [Biolog]

Advantages

- Is not requiring of expensive equipment
- System is quick, reproducible and easy to perform
- Data can be shared between laboratories
- Can provide a reasonable identification to the genus and species level
- Limitations
 - Requires investment [access] to the library
 - Has limitation in resolving below species level [pathovar separation]
 - Library stronger on human microbials than plant pathogenic bacteria

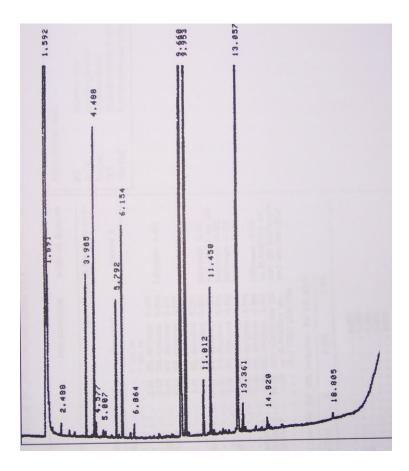
Fatty acid analysis – the Midi system

Fatty acids

Gram-negatives

- Unique hydroxy patterns
- Some cyclopropanes
- Few branched acids
- Gram positives
 - Many branched acids
 - Very few hydroxy and cyclopropane acids.

The Midi system


- Commercial and / or lab produced [http://www.midi-inc.com/]
- Based on comparisons of types and amounts of acids
- Interrogates library for identification
- Typical "return":

NCPPB Rev 3.0	Agrobacterium biovar 1	0.814
	Agrobacterium biovar 2 (0.567
	Agrobacterium biovar 3 [vitis] (0.316

Fatty acid extraction process

- Culture Cells [i.e. 24hr on TSBA]
- Harvest Cells
- Saponify Lipids
- Methylate Fatty Acids [FAMEs]
- Extract and Purify
- GC analysis
- Comparison to library

MIDI system print outs

RT Area Arylit Respon ECL Name ≸ Comment 1 Comment 2 1.604 309664512 0.031 7.021 SOLVENT PEAK	lottle:	2032 41	NM-P. PF	HAS. 95.1 [TSBA4	0}				Di	ate of run	n: 16-SEP-0	0 08:35:27
1.604 309664512 0.031 7.021 SOLVENT PEAK cmin rt 2.497 656 0.026 6.942 cmin rt min rt 3.995 10872 0.032 1.633 11.424 10:0 30R cmin rt 4.400 23184 0.035 1.031 12.000 12:0 cmin rt 5.015 600 0.037 1.013 12.000 12:0 cmin rt 5.015 600 0.037 1.013 12.000 11:0 130.03 cmin rt 5.015 600 0.037 1.015 12.485 unsknown 12.484 0.13 ECL deviates 0.001 5.015 600 0.37 1.015 13.455 12:0 30H .3.76 ECL deviates 0.001 5.015 6008 0.039 0.999 13.455 12:0 30H .3.75 ECL deviates 0.000 6.164 18088 0.039 0.998 14.000 14:0 .2.45 ECL deviates 0.001 9.670 165296 0.046 0.954 15.019 Sun In Feature 3.317 ECL deviates						Nane		×.	Comment	1	Comme	nt 2
E-Lunch to Total Area & Humani Total Amot Nor Ref ECL Deviation Ref ECL Shift	1.604 2.497 3.995 4.490 4.587 5.015 5.803 6.164 6.872 9.670 9.963 11.021 11.460 13.068 13.372 14.830	309664512 656 10872 23184 1112 8008 1216 165296 141495 6136 16376 94856 3184 1384 1384	0.031 0.025 0.032 0.035 0.034 0.034 0.038 0.038 0.038 0.046 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.049 0.050 0.050 0.050 0.050 0.049 0.050 0.		021 90L/ 942	3 30H 3 5 30H 3 5 30H 3 5 20H	3	2.41 5.03 0.24 0.13 2.40 3.76 0.25 33.17 28.35 1.22 3.26 18.87 0.63 0.28 33.17 0.28 3.3.17	<pre>c min rt BCL deviates ECL deviates ECL</pre>	0.000 0.001 0.001 0.000 -0.000 -0.003 0.001 -0.002 0.001 0.001 0.001 0.002 iso 208 1 w6c (10c/19w6	Reference 16:1 »7c/1 Reference Reference Reference un 18.846/ 15:0 180 2 19:1 w6c/-	0.001 5 iso 20H 0.002 -0.001 0.001 -0.001 19:1 w5c x0H/16:1w7c
309664512 495280 495280 100.00 475532 6 0.001 0.001	309664	512 4	0000	105290	100.00	475532		6	0.001		001	

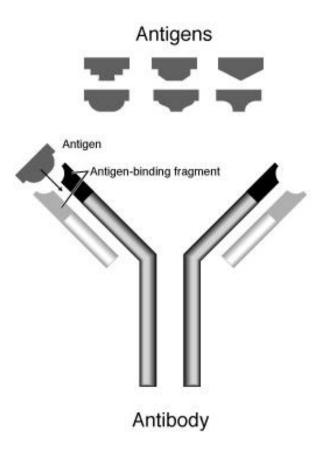
- GC trace [left]
- Library analysis [above]

Key acids from 4 genera

Acid	Acidovorax	Ralstonia	Pseudomonas	Burkholderia
10:0 3OH	+		+	+
12:0 2OH			+	
12:0 3OH			+	
14:0 3OH		+	+	+
16:0 2OH		+		+
16:0 3OH			+	+
16:1 2OH		+		
18:1 2OH		+		+

Fatty acid analysis

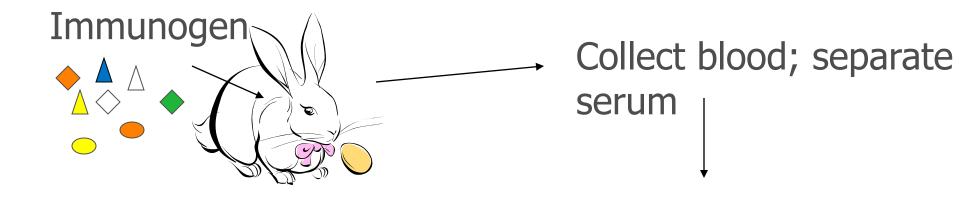
Advantages


- System is quick, reproducible and easy to perform
- Data can be shared between laboratories
- Can provide a reasonable identification to the genus and species level
- Limitations
 - Requires investment in GC equipment and MIDI library
 - Has limitation in resolving below species level [pathovar separation]
 - Library stronger on human microbials than plant pathogenic bacteria

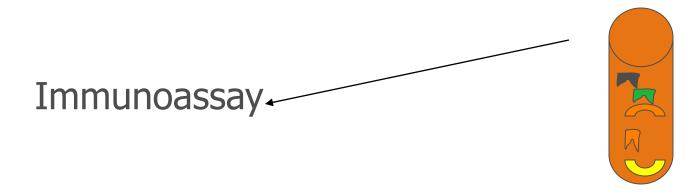
Serological approaches

Serological approaches

- Rapid
- Sensitive
- Specific
- Diagnose diseases


Immunoassays are based on antibodies....

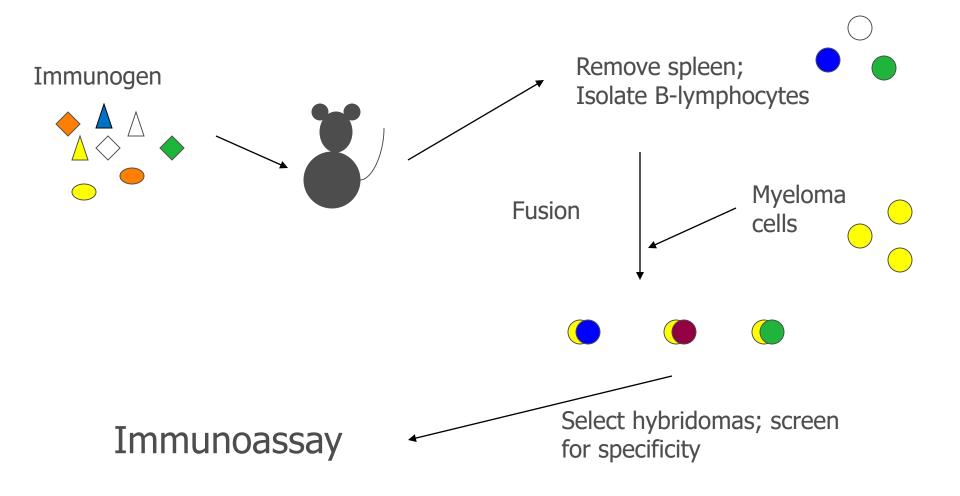
- Mammals produce antibodies that specifically recognize binding sites (epitopes) on proteins, glycoproteins, lipopolysaccharides, carbohydrates (antigens)
 - Polyclonal antibodies
 - Monoclonal antibodies
- Antibodies specifically bind antigens
- Bound antibodies are detected with various markers


Polyclonal Antibodies

- Immunogens (preparations containing antigens that are used to immunize an animal)
 - Various degrees of purification of immunogens
 - Whole cells
 - Cell (surface) washings
 - Virus particles
 - Broken cells
 - Purified cell components
- Immunogens injected into animals for antibody production

Polyclonal antibody production

Purify antiserum


Characteristics of polyclonal antisera

- High sensitivity
- Varying specificity depending on purity of immunogen/number of epitopes
- May vary from batch to batch

Monoclonal antibodies

- Single type of antibody
- Highly specific
 - Recognize single epitope
- Sensitivity varies
- Produced by hybridoma cell lines that are theoretically immortal

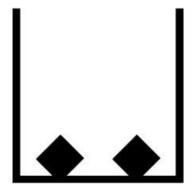
Monoclonal antibody production

Immunoassay formats

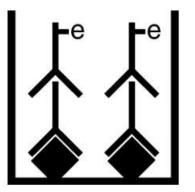
- Enzyme-linked immunosorbent assay (ELISA)
 - Enzyme conjugated to antibody = marker
 - Alkaline phosphatase
 - Peroxidase
- Lateral flow immunoassay
 - Ab-Ag binding occurs as mixture flows through solid phase in liquid
- Immunofluorescence
 - Fluorescent molecule marks Ab-Ag reaction

ELISA

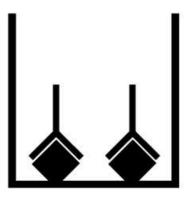
- Positive reaction indicated by enzymatic reaction with chromogenic substrate = color change
 - Antigen capture/plate-trapped antigen
 - Antigen bound to solid phase
 - Indirect vs. direct
 - Direct = detecting antibody conjugated with enzyme
 - Indirect = enzyme conjugated to secondary antibody
 - Sandwich ELISA (double antibody, triple antibody)

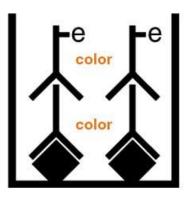

Direct, Double Ab Sandwich ELISA

DAS-ELISA


Indirect, Plate-trapped Antigen ELISA

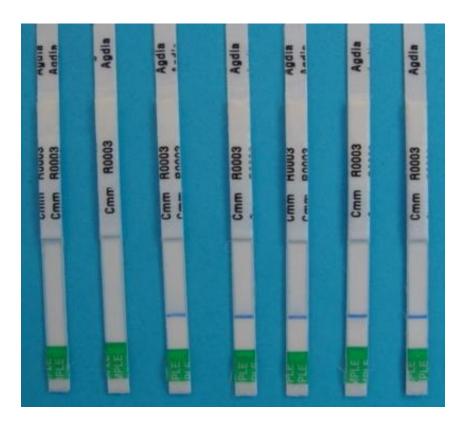
Primary Ab specific to Antigen


Secondary Ab produced in a different species, e.g. goat - specific to primary Ab Step 1 Specific antigen is attached to a solid-phase surface

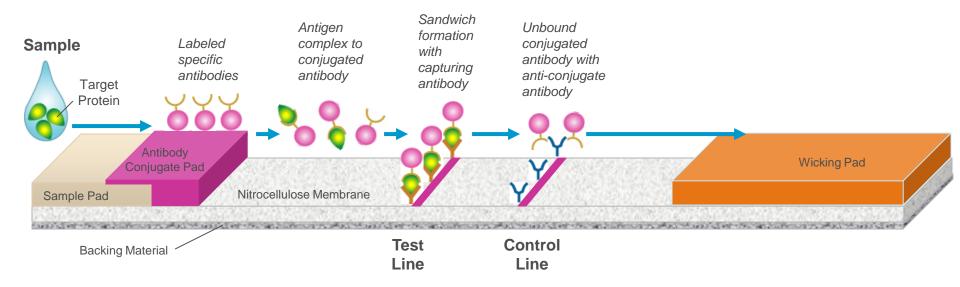

Step 3 An enzyme-labeled antibody specific to the test antibody is added (conjugate)

Step 2 Test specimen is added, which may or may not contain the antibody

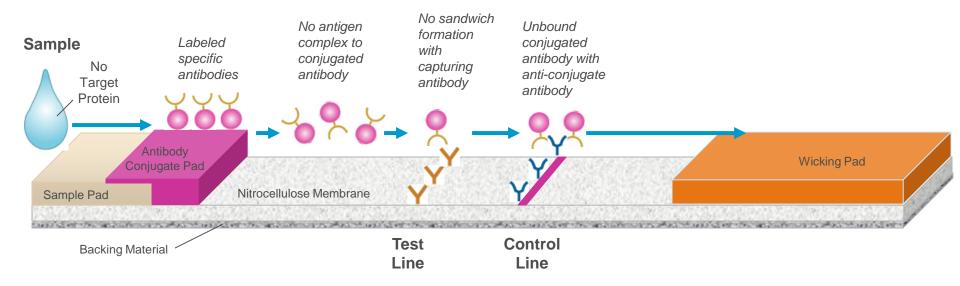
Step 4 Chromogenic substrate is added, which in the presence of the enzyme, changes color.



Multiwell Immunoasay


- Many commercially available
- Most detect various viruses
- Also for bacteria, fungi

Immunostrip (Lateral Flow) Assays


- Very fast 3-5 minutes
- Sensitive
- Some are available commercially
- Extracts diffuse through paper strips
- Marker may be gold microparticles

LFD Cross-Sectional View Positive Result

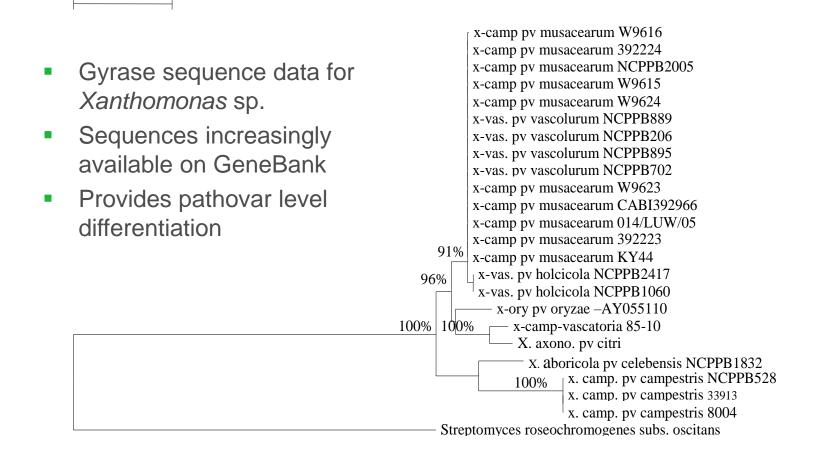
Environlogix, Inc.

LFD Cross-Sectional View Negative Result

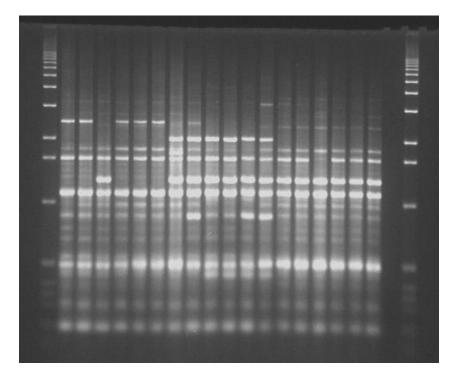
DNA approaches

DNA sequencing

16s rDNA sequencing


- One example: 27F and 1492R primers amplification followed by 518F and 800R primers
- Stringent annealing conditions
- BLAST search for nearest relatives
- Assemblage of closest relatives

Sequencing of other genes


- Whilst 16S rDNA is the normal target for sequencing, for some bacteria insufficient variation may be present to allow differentiation below the species level [pathovar level]
- For these bacteria different target sequences can be used which present more variation
 - Examples include:
 - Hrp genes
 - Gyrase gene
 - 16-23S rDNA interspacer region

Sequence alignment

0.1

DNA fingerprinting

- By comparing DNA fingerprint of unknown to known strains an identification can be achieved
- Is particularly appropriate for pathovar level identifications
- Require access to known strains [genetic resource collection]

DNA approaches to identification

Advantages

- Commercial services available for sequencing
- Data can be shared between laboratories
- By a combination of approaches identification to the genus, species and pathovar level can be achieved
- Limitations
 - Requires investment in PCR and gel equipment
 - Cost of molecular consumables is high
 - Technically demanding; PCR is notorious for 'random' problems