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EXPERIMENTAL DESIGN 
 
 
I      What is Experimental Design? 
 
Experimental design is a procedure of planning experiments so that the data obtained 
can be analyzed to arrive at valid results and unbiased conclusions.  Planning an 
experiment is important because experimental units (or experimental plots) are not 
uniform.  Uncontrolled variations can result in data with so much “noise”, causing the 
experimental results to be unclear or biased, and therefore not valid.  The objective of 
experimental design is to reduce the impact of uncontrolled variations and validate the 
results of the statistical analysis. It has three important components:  replication, 
randomization, and error control 

 
II   Basic Statistical Concepts  
 
Experimental unit is the experimental material to which a treatment is applied.  The 
following are some examples:  a plot of land, a single leaf, a single plant, 24 fruits on two 
trays, 3 plants in a pot, 12 seeds in a petri dish, etc. 
 
Test factor (or simply factor) is a variable that the experimenter varies in an 
experiment.  If the experiment is conducted to compare the yield of ten varieties then 
“variety” is a factor.  Other examples are age of seeds (1, 2, 3 months), shelter (w/, 
w/o), or types of mulch (w/o mulch, w/plastic, w/straw). 
 
Level is a quantity or aspect of a given factor.  Enclosed in parentheses in the paragraph 
on Test factor above are examples of levels of the listed factors. 
 
Treatment is a level of a factor or specific combinations of factors and levels applied to 
the experimental units to measure the effect of its application.  In single factor studies, 
such as the regional yield trials, the treatments are the test varieties. 
 

Example:  
 
Fresh Market Tomato    Grafting   

FMTT904 (V1)       With 
FMTT957 (V2)       Without 
FMTT962 (V3)       

 
 
Treatment effect is the expected increase or decrease in response with the application 
of a particular treatment. 
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Example: 
Variety            Varietal effect on yield 
 
Recommended       6 t/ha    varietal effect is the “increase”  
                                                                                        in yield of the hybrid over the check 
Check                    3 t/ha                 
                    
 

 
Precision refers to the closeness of the measurement to the average.  It is achieved 
through the following: 

1. Experimental units which are as uniform as practicable 
2. Careful conduct of all operations before and during the experiment 
3. Replication 

 
Standard deviation is a measure of spread or extent to which observations vary in a 
population.  It gives a small value if the observations cluster closely about the mean and 
a large one if they are spread widely.  Below are two sets of data with a common mean 
but different variability: 
 

        Mean Standard 
            deviation 
Set I 7 8 8 9 10 10 11 9 1 
Set II 1 2 3 9 14 16 18 9 7 

 
Both sets have a mean of 9 but Set I has observations concentrated around the mean 
while Set II has observations spread more into the tails.  The difference in the levels of 
variation of the two sets is reflected on their standard deviations.  We can say that Set II 
has a larger variation compared with Set I. 
 
Standard error is also a measure of dispersion.  It measures the variation of sample 
means instead of individual observations.  Suppose that there are 1000 plants in the 
field shown in Fig. 1.  If we obtain 10 random samples of 5 plants each and measure 
mean plant height of the five plants in each of the 10 random samples, we would have a 
series of 10 mean values of plant height.  These 10 mean values also vary from sample 
to sample.  The variation of the means is called “standard deviation of the means” or 
what is commonly known as “standard error”.   
 
 
 
 
 
 
 
 
                Fig. 1 
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If you wish to describe the spread of values in the sample, use standard deviation.  If 
you wish to provide information about the reliability of the sample mean, use standard 
error which describes the variation among individual sample means. It measures how 
close the average of your samples is to the real mean. Standard error depends on 
the sample size. The standard error of the mean decreases as the sample size, n, 
increases. If you have a large sample, you would expect your average to be pretty close 
to the real population mean. If the standard error is large relative to the mean, say 5 ± 
4.7 (mean=5 and standard error=4.7), we should not attach too much importance to the 
sample mean because we are likely to obtain a quite different mean value if we 
repeated the sample measurements. In journal articles, some papers use standard 
deviations (SD) to describe the distribution of variables, but others give the standard 
errors (SE) of the means of the variables. 
 
Bias is the difference in the expected value and the true value of an estimate and results 
from subjective assignment of treatments to experimental units, subjective scoring, 
and/or measurements using badly calibrated instruments. 
 
Coefficient of Variation (CV) is a measure of the reliability of an experiment.  It 
expresses the experimental error as a percentage of the mean.  The higher the CV the 
lower the precision associated with the comparison of treatment means. 
 
III  Experimental Error 
 
Experimental error is not an error in the sense of being wrong.  It results from the 
natural variation that exists among experimental units or random variations in the 
procedures used in an experiment.  Experimental error is defined as the variability or 
differences in the experimental units that have the same treatments. In a variety trial, it 
is the differences among plots that were planted with the same variety. It provides a 
basis for determining the chances that the observed differences among the varieties are 
real or not.  Steps can be taken to minimize the effect of variation if its cause is known 
but it can never be totally eliminated. There always will be some variation among 
experimental units that cannot be controlled. 
 
The presence of inherent variability (or variation) in any experiment is a reality a 
researcher has to constantly deal with in his quest for new scientific discovery or 
technological innovations.  Whether big or small, there’s always going to be natural 
variation in what is being measured.  If variation did not exist, statistical analyses will 
not be needed.  
 
Take a simple experiment conducted in the field by a researcher who wanted to 
compare the yields of two varieties of tomato. He planted two tomato varieties, A 
(recommended) and B (traditional) in two plots, as shown in Fig.2.  
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                                                   Fig. 2 
 
The researcher applied the same cultural practices on both plots.  Yield was measured 
and compared.  Recommended variety A gave higher yield (5kg).  Based on this result 
can ‘A’ be recommended to the farmers?  How can the researcher and the farmers be 
assured that the yield difference observed between the two plots was due to varietal 
difference and not due to random variations occurring in the field where the plots were 
located?   
 
Because of some doubts expressed on results of Expt 1, the researcher replanted the 
same two plots, both with variety A (Fig.3).  
 
 
 
 
 
                                                                         
               Fig. 3 
 
The researcher found that the two plots in Expt 2 which were planted to exactly the 
same recommended variety A, and treated identically, also gave different yields (5.0 vs 
4.0 kg).  This indicates that besides variety, other factors such as soil fertility, soil 
moisture, disease and insect incidences, etc, also affect yield.  This means that the 
observed difference in yields of A and B plots in Expt 1 could also be due to the natural 
variations present in the experimental plots, and not due alone to variety used.  It is 
clear from the illustration that any observed difference between any two varieties could 
be due to confounding effects of various factors, controlled and noncontrolled.  How 
then can the researcher separate the real effect of variety from the effect of other 
sources of variation?  
 
Let 
    D  =  observed yield difference between A and B plots in Expt 1 (varietal effect)      
    E  =  observed yield difference between two A plots in Expt 2 (experimental error) 
 
The yield difference between the A and B plots is “significant”, only if this difference is 
“greater” than the expected outcome if the two plots were both planted to A.  That is, 
we can conclude that the yield difference between A and B is significant, and not due to 
chance (i.e., not due to other sources of variation), if D is “substantially” larger than E.  
How “substantial” the difference is can only be decided by criteria provided by a 
statistical test which involves both D and E. 

  

  

Expt 1 

Expt 2 

A B 

    A A 

5.0 kg 

5.0 kg 

3.0 kg 

4.0 kg 
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Since the experimental error is a deciding factor in declaring whether a varietal 
difference is real or just due to chance, the experiment should be designed so that a 
measure of experimental error can be obtained.  Only when treatments are replicated, 
that the experimental error can be measured.   
 
IV  Replication 
 
Replication is the independent application of a treatment to more than one 
experimental unit.  It provides a more precise measure of treatment effects by providing 
an average of individual observations.  It provides a basis for estimating experimental 
error (also called “noise”), which is needed to determine if varietal differences (also 
called “signal”) are big enough to infer that they are real.  
 
In an experiment where varieties are being evaluated, replication means that each 
variety has been planted to more than one plot.  No test plots are identical and 
therefore, data collected will vary.  The purpose of replication is to allow us to make a 
more accurate estimate of the varietal performance even though there are uncontrolled 
variations in the experiment. 
 
Suppose we planted two tomato varieties, a recommended (V1, unshaded) and a local 
variety (V2, shaded) as shown in Fig. 4, with five plants for each variety. We want to 
know which of the two varieties will give higher yield.   
 
 

            
                 30        24       19          25     22       23        25       29         27          24 
                                                                       Fig. 4 
 
After harvest, we compare the two varieties.  The five recommended V1 plants 
(unshaded) gave 30, 25, 23, 29, and 27 g/plant with mean=26.8 g, and the V2 local 
plants (shaded) gave 24, 19, 22, 25, and 24 g/plant with mean=22.8 g.  The statistical 
analysis showed that the recommended variety has significantly higher yield.  Without 
replication we would not be able to analyze the data statistically because not all of the 
recommended plants gave higher yields than the local varieties.   
 
Suppose we had only two plants (Fig. 5) 
 

         
30 19      

  Fig. 5 
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If the recommended plant gave 30 kg and the local variety, 19 kg, then it does not seem 
very hard to say that the recommended variety has a better yielding capacity than the 
local check, as it is expected and consistent with the result in Fig 4.  
 
 
But suppose the recommended variety had 23 kg and the local variety had 25 (see Fig. 
6), we might conclude that the recommended variety does not seem to offer a yield 
advantage over the local variety, and probably reject it. 
 
 

             
23    25      

     Fig. 6 
 
Since varieties in both Fig. 5 and Fig. 6 lack replications, there is no measure of 
experimental error against which the observed differences can be tested. If the 
recommended variety was truly higher yielding, the average effect over replications will 
reflect its real worth.  If it is not, the few experimental plots which gave high yields will 
be negated by the plots with low yields, as illustrated in Fig. 4. It is, therefore, not valid 
to make any conclusion with only a single observation. 
 
How many replications are needed?  There is no hard and fast rule to follow on number 
of replications to use.  In general, the greater the variation expected, the greater the 
number of replications required.  Most often, however, the amount of variation is not 
known at the start of the experiment.  The use of at least three replicates is always 
suggested, but four or five is better.  Found in the Appendix are formulas on how to 
compute the required number of replications. 
 
Oftentimes, compromises have to be made on the number of treatments and number of 
replications to include since the size of most experiments is limited by budget or space, 
etc.  Suppose there are only 12 available plots in the field, the combination of number of 
varieties and replications that can be accommodated is as follows: 
 
               Varieties          Replications 

6 2 
4 3 
3 4 
2 6 

How do you choose from among the four combinations?  The number of replications 
required depends on the variation expected and the degree of precision desired by the 
researcher. In this example, using more replications would limit the number of 
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V2 V4 V1 V3 

treatments to test but the results are expected to be more reliable and it is better than 
having unreliable results because of insufficient number of replications. 
 
Pseudo-replication. Replication in the statistical sense refers to different measurements 
from independent experimental units.  Consider the illustration in Fig. 7.  A researcher is 
evaluating the yield performance of 4 new varieties of pepper.  He sows seeds on each 
of 4 plots, one variety per plot.  At harvest he divided each plot into 3 subunits.  The 
yield in each subunit was measured and labeled correspondingly, as rep1, rep2, and 
rep3.  Are these true replications?   
 
Clearly, this is a case of pseudo-replication.  The subunits are not independent of one 
another.  Here, the experimental unit is a plot and the 3 subunit measurements taken 
are only samples and not replicate values. 
 
 
 
 
 
 
 
 
 
 
 
 
 

              Fig. 7 
 
 
V Randomization 
 
Randomization is a way of assigning treatments to the experimental units such that each 
experimental unit has an equal chance of receiving any of the treatments.  It avoids 
biased assignment of treatments. It helps equalize known, unknown, and unpredictable 
influences on the experiment and allows us to obtain a valid estimate of experimental 
error.  All possible systematic biases cannot be anticipated nor avoided, the rule 
therefore is to randomize all experiments.  
 
Illustration of the importance of randomization.  Suppose we want to compare the 
yield of two sweet pepper varieties.  We use five replications (each replicate 
represented by a plant in this example) and plan to lay out the varieties following either 
Layouts A, B, or C in Fig. 8.  Which layout is correct? 

 

At harvest   

V2 V4 V1 V3 
 Rep1 

Rep2 

Rep3 
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                           KC295           Sweet 057 
 

                                         
                          K         S     K    S     K      S        K      S          K       S 
         
      

                                           
               S        K                K      S              K        S             S      K             S        K 
                  REP1                 REP2                REP3              REP4              REP5 

 
 

      High                Fertility gradient            Low 
 

Fig. 8 
 

Neither Layout A nor Layout B is statistically sound.  The varieties in Layout A are not 
randomized, while in Layout B, the varieties are systematically arranged.  With the 
gradual reduction of fertility from left to right, variety KC295 is favored in both layouts 
because plots assigned to it are located in the portion of the field where fertility is 
relatively higher.  The yield difference between KC295 and Sweet 057 could be due to 
the difference in the soil fertility level, and not due to the yielding capacity of the 
varieties.  To avoid such bias, the varieties should be assigned at random (Layout C) so 
that the comparison of the varieties will not be biased in favor of any particular one.  
 
There are many ways to randomize varieties but the simplest is to write the numbers on 
individual pieces of papers, mix the slips of papers, and then select the slips one at a 
time without looking, to decide the order of varieties.  The table of random numbers, 
widely available in most Statistics books, can also be used. Many statistical packages 
now include randomization and field layouting modules.  Never arrange treatments in 
an order that is merely convenient.  Keep in mind that you can never have a perfect 
randomization.  On rare occasions that you happen to obtain a systematic pattern on 
your first try, do not hesitate to randomize again. 
 

Layout A 

Layout B 

Layout C 
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An example of a systematic pattern to watch out for is shown in Fig. 9: 
 
Layout of an experiment with 6 varieties and 3 reps 
 

 
 
 
 
 
 
 

Fig. 9 
 

Note that in all 3 replications, varieties LINE and DOTS are consistently positioned next 
to each other.  Suppose that variety “LINE” is naturally much taller than the other 5   
varieties such that it can slightly shade the variety next to it.  Variety DOTS would then 
be unfairly and consistently disadvantaged if this randomization was used because DOTS 
is always planted next to the tall variety.  We want to avoid such biased arrangement 
because the position of a variety relative to another variety may affect their 
performances.   
 
VI  Error Control 
 
There are two kinds of variation in a variety trial:  
 

1. the variation that can be accounted for in the statistical analysis, such as the 
variation due to varieties (varietal effect) 

2. the inherent variation in the experimental units which may be due to factors 
other than varieties, such as soil heterogeneity, pest and disease incidences,  
cultural practices, environment, sampling procedures, and other unexplained 
variations (experimental error). 

 
Experimental error is the “deciding factor” in concluding whether an observed varietal 
difference is real and not just due to chance. We should therefore always strive to 
control the 2nd type of variation the best way we can.  The more homogenous the 
experimental units are, the smaller the experimental error which results in higher 
precision and greater chances of detecting differences among test varieties.  It is 
impossible to have complete control over all the sources of variation in the field but it is 
possible to minimize them. 
 
VII  Blocking  
 
There are several ways of controlling inherent sources of variation.  The most effective is 
“proper blocking” which refers to the assignment of a group of plots or experimental 
units into blocks such that the plots or experimental units within a block are as 

Rep1      Rep2      Rep3 
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homogenous as possible.  By blocking, we can measure block-to-block variation and 
then remove that variation from the experimental error, and consequently, reduce its 
magnitude.   
 
In variety trials, a block would usually contain a set of all varieties.  For example, if there 
are four varieties, each block will have four plots or experimental units, one for each 
variety. This is what is called a “complete block.”  A complete block represents one 
replication.  If there are four replications then there are four blocks.  The terms 
“replication” and “block” are commonly used interchangeably, but they are not one and 
the same and they serve different purposes.  The treatments are assigned randomly and 
independently within each block.   
 
If you can identify or anticipate sources of variation, blocking is an effective tool in 
reducing experimental error. The illustration in Fig. 10 shows a field with 
nonhomogenous experimental units.  The shaded side has a history of waterlogging.  If 
you assign the varieties completely at random in A, there will be large confounding 
variations in your data. One known possible source of variation, aside from that due to 
varieties, is the non-uniform moisture level in the area.  Differences due to this source 
of variation can confound the effect of variety, in which case, any observed difference 
between varieties is not only due to variety, but could also be due to the effect of excess 
water on the varieties assigned to the waterlogged plots. This extraneous effect could 
mask real varietal effect and give unreliable results.  Because you know that the possible 
source of variation is water gradient, you can block the experimental units by using it as 
the blocking criterion.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
The objective of blocking is to make variation from plot to plot within blocks as small as 
possible while maximizing the variation among blocks. Thus, always orient your blocks 
perpendicular to the source of variation (B) to maximize the differences among blocks 
and to minimize the within-block differences.   
 
Variation can be reduced by maintaining uniformity of environmental factors in all plots.  
The most important ones to be always concerned about, aside from soil characteristics, 
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        Fig. 10 
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are nonuniform conduct of cultural practices, nonuniform disease pressure and insect 
incidences, plant population, nonuniform measurement techniques, etc. When we 
standardize measurement techniques we become confident that the measurements are 
being done in a consistent way which could lead to reduced experimental error (lower 
noise). 
 
To further minimize variation, consider each block as a unit and do field operations such 
as transplanting or harvesting by block.  Don’t start or move to another block before you 
have completed the other block.  Suppose that you have 10 varieties with four 
replications laid out in four blocks.  Each block with 10 plots is one replication.  Let’s say 
that due to time constraint, only 25 plots can be harvested in one day.  After you have 
completed the 20 plots on the first two blocks, do not harvest 5 plots on the third block 
just because there’s still time to do it.  Rather, harvest two blocks (20 plots) on the first 
day and the other two blocks (next 20 plots), the following day.  This would allow the 
removal of the variation due to “day” from the experimental error.  This should be 
practiced for all other field operations and not just in harvesting.   
 
If field operations are handled by more than one person, as is the usual case, assign only 
one person to one or two blocks, but not different persons in one block.  In this way, 
variation due to differences in the way people handle experimental materials and 
procedures can be removed from the experimental error.  
 
When we use standard measurement techniques we become confident that the 
measurements are being done in a consistent way which could also lead to reduced 
experimental error (lower noise). 
 
How to block.  A logical sequence in the process of blocking starts with first finding out 
if there is something (soil fertility, soil type, weed incidence, drainage, shadow, etc) 
which is not uniform throughout the experimental site that may influence varietal 
effect.  Next is determining its direction.  This may not be easy unless a uniformity trial 
has been conducted previously on that site.  For example, there is a moisture gradient 
forming a slope running along the north-south direction (dark to light shade in Fig. 10), 
you may use this as basis for blocking.  
 
The orientation of the block should be perpendicular to the source of variation (Fig. 
11A).  However, if the sources of variation are not known, compact or “squarish” block 
(Fig. 11B) should be used because plots that are closer are expected to be more alike 
than those that are farther apart.  The use of long and narrow blocks should be avoided 
when the conditions of soil and other environmental factors are unknown. 
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Greenhouse experiments.  Due to absence of sources of variation such as soil 
heterogeneity, moisture or fertility gradients, some experimenters believe that blocking 
is not essential in experiments conducted in greenhouses.  One will be surprised that in 
some greenhouse experiments, the variations are as large as, if not higher, than 
variations in field experiments. The variations found in the greenhouses may not come 
from the same sources as those in the field, nevertheless, they are present and could 
mask treatment effects just as much, if not more, than the variations in the fields.   
 
For example, in a greenhouse experiment, the experimental units (pots) are placed on a 
bench along the east side of the greenhouse.  Some pots are exposed to full sunlight, 
some are half-exposed (gray-shaded), while others are totally unexposed (black-
shaded).  Assigning treatments completely at random as shown in Fig. 12 results in 
nonhomogeneous experimental units and thus, large variation. 
 
 
 
 
 
 
 
 
 
Blocking, in this case, is essential to remove the variation due to nonuniform light from 
the experimental error.  Use the direction of light source as basis for blocking and orient 
blocks perpendicular to the light source as shown in Fig 13.  In this way, within each 
block (column), experimental units receive the same amount of light and unexplained 
variations are minimized.  Differences among blocks are larger but can be removed from 
the experimental error.  
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VIII Types of Experiments  
 
There are two types of experiments as: 

 
1. Single factor experiments - only one factor varies while all others are kept  

constant.  
 

 Examples:  
a) A fertilizer trial where several types of fertilizers are evaluated 
b)   A variety trial where newly-developed varieties are evaluated  
c)   An insecticide trial where several insecticides are evaluated  

 
The results of a single-factor experiment are applicable only to the particular level at 
which other factors are fixed in the trial.  Because of this constraint, single factor 
experiments are often criticized for their limited application.  For example, the 
results of the experiment involving different organic fertilizers to assess its effect on 
yield of chili pepper using only one chili pepper variety are applicable only to this 
particular variety.  The effect of the organic fertilizers may be different if other 
varieties are used. 
 
2. Multi-factor (or Multi-location) experiments – In multi- factor experiments, the 
treatments consist of all possible combinations of selected levels of two or more    
factors.  In multi-location experiments, single factor varietal trials are conducted  
separately in several locations.      
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B1 B2 B3
 

B4 

    Fig. 13 
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Examples/contoh:  

a) A 3x2 factorial experiment involving 3 varieties of tomato and 2 grafting 
treatments conducted in one location 

   
Trt No 

 
Variety Growth regulator 

1 V1 Grafted 
2 V1 Non grafted 
3 V2 Grafted 
4 V2 Non grafted 
5 V3 Grafted 
6 V3 Non grafted 

 
b) A 2x2x2 factorial experiment involving 2 shelter types, 2 tomato varieties, 

and 2 types of irrigation  
 

Trt No Shelter 
 

Variety 
 

Irrigation 
 

1 S1 V1 I1 
2 S1 V1 I2 
3 S1 V2 I1 
4 S1 V2 I2 
5 S2 V1 I1 
6 S2 V1 I2 
7 S2 V2 I1 
8 S2 V2 I2 

 
In a multi-factor or factorial experiment, several factors are considered 
simultaneously and it is possible to test not only the effect of each factor but also 
the changes in its effect when the levels of the other factors vary.  Such changes are 
known as “interaction effects”. See illustration of interaction between variety and 
fertilizer type in Fig. 14.   
   
 

IX  Concept of Interaction  
 
• Interaction effect between two factors can be measured only if the factors 

are tested together in the same experiment  
 
• When interaction is present, the effect of a factor changes as the level of 

the other factor varies  
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• When interaction is absent, the effect of a factor does not vary when the 
levels of the other factor changes  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14 shows the presence and absence of GxE interaction between variety and 
location.  Without GxE interaction (a), varietal effect is the same over the two 
environments (locations).  That is, V1 gives consistently higher yield than V2, whether 
grown in Location A or in Location B.  When GxE interaction is present, varietal effect 
varies with the location where the varieties are grown.  The difference maybe in the 
amount of varietal response to the environment.  In (b), for example, V1 and V2 both 
respond positively with increased yield in both locations, but the increase in V1 is larger 
than that in V2; while in (c), the location has an inverse effect on yield.  The yield of V2 
increased in Location B, while the yield of V1 decreased. 
 
X  Factorial Treatments 
 
Oftentimes, you would hear or read that the experiment was conducted using a 
“factorial design”.  This is misnomer because such an experimental design does not 
exist.  The term “factorial” only refers to the way the treatments are arranged and not 
to an experimental design.  When two or more factors are involved in an experiment, 
the combinations of all the levels of these factors are referred to as “factorial 
treatments”.  If the factorial treatments are tested in an experiment conducted using 
RCBD, then we say it is a “factorial experiment in RCBD”. 
 
The term “factor” refers to the variables that vary in the experiment, such as variety, 
types of fertilizer, insecticide, planting density, tillage, etc.  “Levels” of a factor are 
various quantities or aspects of a given factor.  In a factorial experiment, all levels of one 
factor are paired with all the levels of the other factor to form the treatments.  The total 

Yield 

A B 

V1 

V2 

V1 

V2 
V1 
 

V2 

            Location 

a) No interaction b) Interaction is 
difference in amount of 
response 

c) Interaction  is difference 
in direction  of response 

                 Location 
 
 Fig. 14 

      Location 
 

A B A B 
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number of treatments in a factorial experiment is the product of all the levels of the 
factors involved in the experiment.   
Illustration: 
 
A. Two factors, for example, NPK (with and without) and variety (V1 and V2) give a 2x2 
(“two by two”) factorial treatments, as follows:  

 
T1 = V1, without NPK (V1N0)  
T2 = V1, with NPK (V1N1)  
T3 = V2, without NPK (V2N0)  
T4 =  V2, with NPK (V2N1) 
 

B. Three factors, say, variety (V1, V2, V3), fertilizer (organic, inorganic), and planting 
date (early, late) give a 3x2x2 (“three by two by two”) factorial treatments, as follows:  
 

T1=V1, organic, early  T5=V2, organic, early  T9 =V3, organic, early 
T2=V1, organic, late   T6=V2, organic, late      T10=V3, organic, late 
T3=V1, inorganic, early  T7=V2, inorganic, early     T11=V3, inorganic, early 
T4 = V1, inorganic, late  T8=V2, inorganic, late     T12=V3, inorganic, late 

 
Another example:  In an experiment to evaluate the yield performance of chili pepper 
hybrids, management practices such as fertilizer application, irrigation and drainage, 
and pest management and all other cultural practices were kept constant.  The yields of 
the six hybrids were found to be significantly different, with two of them showing great 
promise.  But since the results of single-factor experiments are expected to hold true 
only under the specific levels maintained for the other factors, there is no way we can 
generalize the results to cover the other levels not included in the experiment. – 
Questions we then ask may be: Would we get the same resuls if we grow them using 
different fertilizer regimes?  Would the two promising hybrids perform as well? -- We 
won’t know the answers to these questions, unless we conduct a factorial experiment 
with hybrids and fertilizer as test factors. Because of the limited range over which 
results can be generalized based on single-experiments, factorial experiments are now 
generally used in agricultural research experiments. 
 
In a 2x2 factorial experiment involving 2 fungicide treatments (with and without) and 2 
compost tea (with and without), there are a total of 4 factorial treatments, and it is 
possible to:  
 

(1)    compare the chili pepper yield corresponding to the 2 fungicide treatments  
 

     (2)       compare the chili pepper yield corresponding to the 2 compost tea treatments  
 
     (3)   determine if the relative effect of the fungicide treatments changes with  
                 compost tea treatments applied, or vice versa.  
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Conducting two separate single-factor experiments involving each of the factors can 
provide information for (1) and (2), but (3) is only possible by testing both factors in the 
experiment at the same time. 
 
Adding more levels to a factor quickly increases the number of treatments so include 
only the levels which are important or practical.  For example, using three fungicide 
treatments and three compost tea treatments, instead of two, would give 3x3=9 
factorial treatments, more than double the original number. 
 
XI  Groups of Experimental Designs   
 
The two common groups of experimental designs are the following: 
 
a. Single-factor experiments: 

1 Completely Randomized Design (CRD)  
1 Randomized Complete Block Design (RCBD)  
2 Latin Square Design 
3 Lattice Designs 

b. Multi-factor experiments: 
 

1 CRD 
2 RCBD 
3 Split plot  
4 Split-split plot 
5 Split-split-split plot 
 

XII  Completely Randomized Design (CRD)  
 
CRD is the simplest design.  The treatments are replicated but not blocked, rather, they 
are assigned to experimental units completely at random.  Any difference among 
experimental units receiving the same treatment is considered as experimental error.  If 
homogeneity of the whole experimental area can be assured, there is no need for 
blocking and CRD can be used.  Unfortunately, there is a slim chance that any field 
would be uniform enough to make the use of blocks unnecessary, so a CRD is rarely 
used for field trials.  CRD is more commonly used in laboratory and greenhouse 
experiments where environments are believed to be relatively homogenous, although 
blocking is also often necessary even in the more controlled greenhouse environment.   
 
Illustration:  Layout for an experiment in CRD with five treatments and four replications 
(Fig. 15).  There are 5trts x 4reps = 20 experimental units.  The treatments are assigned 
completely at random so each experimental unit has an equal chance of receiving any of 
the treatments.  The treatments in CRD do not have to be replicated the same number 
of times.  Treatments can have unequal number of replicates.  
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                Fig. 15  Layout in CRD, 5 treatments and 4 replications.   
 
XIII  Randomized Complete Block Design (RCBD)  
 
RCBD is the most widely used design for varietal trials and generally, in agricultural field 
experiments.  It is characterized by blocks, each of which contains a complete set of 
treatments, one plot for each treatment.  The experimental area is divided into blocks 
and plots are allocated within each block.  Each variety must be included once in each 
block and assigned to each plot at random, independently and separately for each block.  
RCBD is most effective if patterns of nonhomogeneity or potential sources of variation 
in the field can be predicted.  But even if this information is not available, this design can 
still be used by making the blocks as square as possible.  It is the variabilities among 
experimental units, that are not due to the source of variation used as blocking 
criterion, that contribute to experimental error.  In RCBD, the variability among blocks 
can be measured and removed from the experimental error, resulting in higher 
precision. RCBD can be used for  for single-factor or multi-factor (factorial) experiments. 
 
A field layout for single factor experiment in RCBD is shown in Fig.16: 
a) Field for an experiment in RCBD with five varieties and four replications b) The field is 
divided into four blocks, each representing one replication.  c) Each block is then divided 
into five plots. d) varieties are randomly assigned to plots in each block.  A different 
randomization scheme should be used for each block, and each variety should appear 
once in each block. 

  T1 T4 T3 T5 

T3 T2 T5 T2 

T4 T1 T1 T3 

T1 T5 T4 T2 

T2 T4 T3 T5 
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XIV  Factorial Experiments  
 
A factorial experiment is one in which the effects of multiple factors are investigated 
simultaneously. The treatments consist of all combinations that can be formed from the 
different factors.  An experiment with 4 factors each with 2 levels would result in  
2x2x2x2=32 factorial treatments. A factorial experiment can be conducted using RCBD  
and many other designs.  As in single-factor experiments in RCBD, the treatments are  
assigned randomly to the pool of experimental units, with an equal number of units  
(reps) for  each treatment. 

 
An illustration of field layout for a two-factor experiment in RCBD is shown in Fig. 17  
 
Treatments: 
T1:  V1, manure 30t/ha   - V1M1 
T2:  V1, manure 20t/ha  -  V1M2 
T3:  V1, manure 10t/ha  -  V1M3 

    

V4 V5 V2 V4 

V1 V3 V3 V5 

V3 V1 V5 V3 

V2 V4 V4 V1 

V5 V2 V1 V2 

       

a b 

c   d 

Block1 Block2 Block4 Block3 

  

Block4 Block3 Block1 Block2 Block4 Block3   

        Fig. 16 

Block1 Block2 
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T4:  V2,  manure 30t/ha -   V2M1 
T5:  V2, manure 20t/ha  -   V2M2 
T6:  V2, manure 10t/ha  -   V2M3                        
T7:  V3,  manure 30t/  -       V3M1 
T8:  V3, manure 20t/ha   -  V3M2 
T9:  V3, manure 10t/ha  -   V3M3     

                       
This is a 3x3 factorial experiment in RCBD. There are two factors.  The first factor is 3 
tomato varieties (V1, V2, and V3), and the second factor is rate of manure application 
with three levels (10, 20, and 30t/ha).  The different combinations of the levels of these 
two factors  form the 3x3=9 factorial treatments in this experiment.  
 
The RCBD can be used to test these factorial treatment combinations. The arrangement 
of the treatments is basically the same whether it is a single-factor or a factorial 
experiment.  That is, each treatment (single or factorial)  is assigned at random once 
within each block.  The field layout in Fig.17 is constructed following steps “a to d” for 
single factor experiment in RCBD discussed previously. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

    

Block1 Block2 Block3 Block4 

a) experimental area  b) experimental area is divided into 4 blocks (reps) 
 
 

Experimental area  

 22 



 
 
 

 
 
   
Fig 17.  Field layout for a multi-factor experiment in RCBD with 3x3=9 factorial 
treatment combinations  
 
 
XV  Split Plot Design  
 
The split plot designs (SP) are used in experiments involving factorial treatments in 
which one of the factors, possibly because of the nature of the experimental materials 
or operations involved, requires bigger plots.   
 
For example, a researcher might be interested in knowing the effect of four tillage 
practices (T1, T2, T3, T4) on yield of three crop varieties (V1, V2, and V3).  For efficient 
application of the tillage treatments, larger plots are needed.  Varieties, on the other 
hand, do not need large plots.  This is an example of two factors to be tested in the 
same experiment having different required plot sizes (Fig. 18). Although RCBD can be 
used in this experiment, its requirement to have all the factorial combinations assigned 
at random, using the same plot size for all, is not convenient for this experiment.  SP 
should be used instead.  The tillage factor levels are assigned to the larger plots called 
“mainplots” and varieties, to the smaller plots within each mainplot which are called 
“subplots”. 
 
In split plot design, the randomization is accomplished by first assigning the mainplot 
factor at random to the mainplots, separately for each replication.  The subplot factor 

V3M1 V2M2 V3M3 V3M1 

V2M2 V1M1 (T1) V2M2 V1M3 

V2M2 V1M2 V1M2 V2M2 

V1M1 (T1) V3M1 V3M1 V3M3 

V1M2 V2M1 V1M3 V2M1 

V2M1 V2M3 V2M1 V1M1 (T1) 

V3M3 V3M3 V2M3 V2M3 

V3M2 V3M2 V3M2 V3M2 

V1M3 V1M3 V1M1 (T1) V1M2 

    

                                        

    

    

     

    

    

    

    

Block1 Block2 Block3 Block4 Block1 Block2 Block3 Block4 

c) each block is divided equally into 9 plots d) each treatment (a combination of V and M) is assigned at 
random separately and independently in each block 
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levels are then randomly assigned to the subplots within each mainplot, using separate 
randomization for each mainplot. 
 
Because there are two sizes of plots, there are two experimental errors in split plot 
design, one for each size of plot.  The subplot factor and its interaction with the 
mainplot factor are generally associated with smaller experimental error.  They are, 
therefore, estimated with precision higher than that for the mainplot factor which, due 
to its larger size of plot, has lesser degree of precision.  In effect, the precision for the 
mainplot factor is sacrificed to have greater precision for the subplot factor.  This 
feature of the SP should be taken into consideration when deciding to use it.  Assign the 
more important factor to the subplot for greater precision and the less important one to 
the mainplot.  If both factors are equally important, use RCBD.  The mainplot treatments 
in a split plot design are measured with less precision than that in RCBD. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 18.  Field layout for a split plot design with 4 tillage practices as mainplot treatments 
and 3 varieties as subplot treaments  
 
 
XVI  Variety trials/Multi-location trials  
 
Varieties differ in many aspects – yielding capacity, adaptation, quality, pest/disease 
resistance, nutrients, etc. The objective of a variety trial is to identify varieties that 

T2 T4 T3 T1 

V2 

V2 

V2 V2 

V3 

V1 V1 

V1 

V1 

V3 

V3 
mainplot 

subplot 

Rep1 

V3 

V3 

V3 

V1 V3 

V2 

V3 V2 

V1 

V2 V2 

V1 

V1 Rep2 

T3 T2 T1 T4 
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perform consistently and exceptionally better than others. Any type of experimental 
design may be used for a variety trial.  The most common is the randomized complete 
block design (RCBD).  The result of a variety trial conducted in a single location is 
expected to hold true only in that location since no variety performs well in all 
environments. The performance of a variety is affected by environmental conditions  
prevailing in the locations where it is planted, such as rainfall, temperature, soil, 
insect/disease, crop management, etc.  Hence, a variety with outstanding performance 
in one location may perform poorly in another location.   
 
Breeders are interested in varieties with consistent superior performance based on the 
desired traits over a wide range of environments.  Environment may refer to location, 
season,  year, or a combination of these factors. To evaluate the adaptation of varieties 
in differing environments, multi-location trials are conducted.  In multi-location trials, 
the performance of crop cultivars can be  evaluated by comparing their means across 
locations.  This is carried out by performing a combined analysis of variance and 
comparing the variety means across locations.   
 
XVII  Genotype x Environment Interaction  
 
When the genotype and environment interact the test varieties will fail to give the same 
relative performance for a given trait in all environments. An environment may 
represent a location, a season, or year, or a combination of two or three of these  
factors.  See illustrations in Fig. 19a, 19b, and 19c. 
 
a) 

 
 

Fig.19a: No interaction varieties have the same relative performance for a     
      given trait (say, yield) in both locations;  ranking of variety is unchanged between  
      locations.   
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b) 

 
    
Fig. 19b. With interaction - (Case 1):   Yield of varieties varies greatly between 
locations; ranking of variety is unchanged between locations.  
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Fig. 19c. With interaction - (Case 2):   Yield of varieties varies greatly between 
locations; ranking of variety changes between locations.   
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ANALYSIS  OF VARIANCE  
 

The purpose of the statistical analysis that follows after data have been collected is to 
provide answers to questions and objectives of the experiment. If the experiment is 
well-planned based on statistically valid procedures and the mean comparison to be 
performed is decided well ahead and taken into consideration in the planning stage, 
data analysis will not be a complicated process.   
 
The analysis of variance (ANOVA) is a procedure that partitions the total variation (TSS) 
into different sources based on the layout of the experiment in Fig .20.  Each source of 
variation is tested for significance. The principle behind experimental design and ANOVA 
is to identify the sources of variation and formulate the proper tests to compare them. 
 
 
 
 
 
 
 
                              Fig. 20  Layout of an experiment with 5 varieties, 2 reps 
 
Yield is measured on each of the 10 experimental plots and denoted as: 

 
Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10 
 

where Y1-Y5 are yields of treatments T1, T4 ,T2, T3, and T5 respectively, in Rep I, and 
Y6-Y10 are yields of treatments T3, T1 ,T5, T2, and T4 respectively, in Rep II. 
 
Case1: 
            Y1 = Y2 = Y3 = Y4 = Y5 = Y6 = Y7 = Y8 = Y9 = Y10 =  ‘ 4 ‘ 
            (because yields of all plots are equal to 4, no variation exists) 
   
Case2: 
          Y1 =2, Y2 =3, Y3 =4, Y4 =1, Y5 =3, Y6 = 5, Y7 = 3, Y8 = 6, Y9 = 4, Y10 =2  
          (because yields of plots vary, variation exists) 
  
Because of the inherent variation present in the fields where experiments are 
conducted, even if the same treatment is applied and all other factors are kept constant, 
variation in yields will still be present. The total variation among the 10 yield values in 
Case2 can be measured, and is called the Total Sum of Squares (TSS).  TSS is due to many 
sources. Most of the sources of variation can be identified, and its contribution to TSS 
measured through statistical procedures.  In Case1, TSS=0 because no variation was 
observed.  In Case2, TSS≠0 because variations were observed among the Y values. 
 

     

     

T1 T4 T2 T3 T5 

Y1 Y2 Y3 Y4    Y5 

T3 T1 T5 T2 T4 
Y6    Y7 Y8 Y9 Y10 

Rep 2 (Block2) 

Rep 1 (Block1) 
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The total variation in the data set (Fig.21), as measured by TSS in RCBD, can be 
partitioned by ANOVA into:   

a) Sum of squares due to treatments (TrSS)  is a measure of differences among 
treatments  

b)  Sum of squares due to blocks (BSS) is a measure of differences between block 
(or reps)  

c) Sum of squares due to experimental error (ESS) is a measure of differences 
among replications within a treatment. We may, symbolically, write the 
relationship as:   

 
 

 
 
 
 
 

 
 
         

Fig. 21 Partitioning scheme for TSS in RCBD 
 
   We may, symbolically, write the relationship as:  

 
TSS = TrSS +BSS+ ESS 

 
Variations within treatments (experimental error)  
 

Within T1:  Between Y1 (rep1) and Y7 (rep2) 
Within T2:  Between Y3 (rep1) and Y9 (rep2) 
Within T3:  Between Y4 (rep1) and Y6 (rep2) 
Within T4:  Between Y2 (rep1) and Y10 (rep2) 
Within T5:  Between Y5 (rep1) and Y8 (rep2) 
 

Variations among treatments (treatment effects)   
 

 Treatment mean yields:  T1 Mean(Y1,Y7) vs  T2 Mean(Y3,Y9) vs T3 Mean(Y4,Y6) vs   
                                              T4 Mean(Y2,Y10) vs T5 Mean(Y5,Y8) 
 

Variations among blocks (block effects)  
Block (Rep) mean yields:  Block1 Mean (Y1, Y2, Y3, Y4, Y5) vs Block2  Mean(Y6, Y7,  

        Y8, Y9, Y10) 
 
The different sources of variation are dictated by the experimental design used in the 
experiment.  Without blocking, both BSS and ESS become part of the experimental error 
as shown in the partitioning scheme of the sources of variation in CRD (Fig. 22).   

SS due Block 
 (BSS) 

SS due  
treatment 

(TrSS) 

ESS 
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Fig. 22  Partitioning scheme for TSS in CRD  
 
In RCBD, it is possible to remove the portion due to variation among blocks (BSS) from 
the experimental error, resulting in much reduced experimental error. The smaller the 
experimental error, the higher is the precision. 
 
There are three sources of variation (SV) in RCBD (Table 1):  a) the variation due to 
treatments, b) the variation due to blocks (replications), and c) the random variations 
due to unknown sources (called “experimental error”).  
 
Table 1.  ANOVA format for RCBD (single factor), with t treatments and r replications   
 

Most statistical software provide straightforward ANOVA table outputs, but require that 
you know before hand (1) what design you are using, (2) what formulas are used to test 
the hypotheses, (3) and how to generate those tests.  

To ensure valid and appropriate analyses, the ANOVA table format with the sources of 
variation and degrees of freedom should be formulated at the time of design and before 
the experiment is executed.   

To check the appropriateness of your analysis you should generate the ANOVA table for 
your experiment based on the experimental design you are using. The sums of squares 
and degrees of freedom should add up and F-tests should use the proper error terms. 

                    Randomized Complete Block Design  (RCBD)
SV df SS MS F
Replication r-1 BSS BMS = BSS / (r-1) BMS / EMS
Treatment t-1 TrSS TrMS = TrSS / (t-1) TrMS / EMS
Expt. Error (r-1)(t-1) ESS  EMS = ESS / (r-1)(t-1)
Total rt-1 TSS

SS due to 
Treatment 

(TrSS) 

SS due other 
sources (ESS), 

includes variation 
among blocks) 
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There are three sources of variation, based on RCBD among the 5tx2r = 10 observations 
in the field trial example above: 1) the variation due to treatment (which may be 
indicated as “TrMS”), 2) the variation due to blocks (BMS), and 3) the random variations 
due to unknown sources (EMS or “experimental error”).  The ratio between the two 
variations TrMS/EMS will indicate whether the observed mean differences are due to 
real treatment effects or due to chance (Table1).  The ratio BMS/EMS tests whether the 
blocking used is effective in reducing experimental error. 
 
The test of hypothesis of “no treatment difference” can, therefore, be performed by 
comparing TrMS and EMS.  If there are no differences in treatment means, TrMS and 
EMS should be very similar.  Otherwise, we suspect that the observed differences are 
due to treatments. 
 
XVIII  Statistical Hypothesis  
 
Before selecting the appropriate experimental design within which the different 
treatment conditions will be evaluated, the research hypotheses based on the 
objectives of an experiment should first be formulated. 
 
The experimental objectives should be written clearly and in the order of priority as 
many important decisions in the experiment are arrived at based on the objectives.  The 
choice of treatments and the experimental design to be used, the data to be collected, 
the data analysis to be performed, and the presentation of results all depend on the 
objectives of the study.  
 
For example, the major problems in one area are related to soil deficiency -- high 
salinity, low soil pH, poor soil structure, NPK deficiency, low soil nutrient availability, and 
in another area it is insect and disease incidences. Based on this knowledge important 
research objectives can be identified in each location.  With clear objectives the 
treatments can then be identified, the experimental design chosen, and the 
measurements to be undertaken ascertained.  The data analysis to be performed even 
before the actual experiment is conducted can be determined to ensure that the 
objectives can be satisfied. 
 
Generally, the objectives involve determining the effect of treatments on the expected 
response, such as yield, plant height, resistance to pest or disease, etc.  After the 
objectives have been identified, these should be translated in the form of hypotheses 
which can be tested statistically. 
 
Research hypotheses are questions of interest to the researcher based on what is 
known about a particular theory or phenomenon.  The next stage in experimentation is 
the translation of the different research hypotheses into a set of treatment conditions 
which can be proven as true or false using some statistical tests, (such as the F-test), 
through ANOVA.  There are two types of statistical hypotheses:  
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1. Null hypothesis (Ho) - states that no differences exist among treatment means /  
2. Alternative hypothesis (Ha) - contradicts the null hypothesis /  

 
 Examples: 

           
       a) Objective: To determine the effect of organic fertilizer application on yield of chili  
            pepper                              
      

Treatments:  lime/manure and compost/manure 
      

Null hypothesis:  Ho: YLM = YCM  (No difference between yields of lime/manure and  
compost/manure) 

 
Alternative hypothesis:   Ha:  YLM ≠ YCM 

 

If the F-test in the ANOVA based on the ratio TrMS/EMS is significant, we reject 
“Ho” and conclude that the yield YLM is significantly different from YCM (maybe 
higher or lower).  If the F-test is not significant, we cannot reject the “Ho”. It does 
not prove, however, that the treatments are the same.  It only means that the test 
was not able to detect the difference between treatments.  

 
b. Objective: To assess the yield performance of three pepper hybrids 

Treatments:  Three pepper hybrids 
 

Null hypothesis:  Ho:  Y1 = Y2 = Y3 (The three pepper hybrids have equal yields) 
Alternative hypothesis: Ha:  Y1 ≠ Y2 ≠ Y3 

 
c. Objective: To evaluate the effect of fertilizer application on yield and other 
 yield parameters of tomato 

 
 Null hypothesis:  Ho:  Yw = Yw/o (Yields are equal whether or not fertilizer is     
 applied)     
Alternative hypothesis:    Ha:  Yw ≠ Yw/o 

 
In variety trials, the stated objectives as listed in the protocol should be directly related 
to the advancement criteria that have been set.  Based on these criteria, decision can be 
made on whether or not to advance a test variety.  Typically, the performance of the 
test variety is evaluated relative to a check variety.  So both the test varieties and check 
varieties needed to make the assessments should be tested together in the trial.  Clear 
objectives associated with your advancement criteria will help you determine which 
varieties to include in your trial and what data need to be collected. 
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XIX Single-factor experiment in RCBD  
  
The following data on fruit length (cm) of pepper were measured from an experiment 
laid out in RCBD with 3 manure treatments and 4 replications (Table2).  The objective of 
the experiment is to determine the type of manure treatment which would result in 
longer fruit length.  The null hypothesis is Ho: T1 = T2 = T3.   
          
                                               Table 2.  Data on fruit length of chili pepper 

Manure treatments 
(t/ha) Rep  Fruit length (cm) 

T1  1 9.8 
T1  2 10.2 
T1  3 10.4 
T1  4 9.6 

T2 1 12.8 
T2 2 13.1 
T2 3 13.9 
T2 4 14.5 

T3 1 16.2 
T3 2 15.9 
T3 3 18.1 
T3 4 17.1 

 
The ANOVA (Table 3) for the data found in Table 2 can be performed using CROPSTAT.  

 
Table 3. Example – ANOVA based on RCBD 

 
   ANOVA for fruit length (cm),  3 manure treatments and  4 reps 

 

SV df SS MS F Pr>F 
Rep 3 2.8800 0.9600 2.55 ns 0.1514 

Treatment  
2 

 
93.2317 

 
46.6158 

 
124.03** 

 
<0.0001 

Error 6 2.255 0.3758   

Total 11 98.3667    

    
 C.V. =  4.6 % 
 ** significant at P<0.01;    ns – not significant 
 

   From Table 3,   TrMS = 46.6158 
BMS   = 0.9600 
EMS   =  0.3758 
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                 Fc for treatment effect = TrMS/EMS =  46.6158/0.3758 = 124.03 
                 Fc for rep effect    = BMS/EMS   = 0.9600/0.3758 = 2.55 
 
 
The probability (P-value) in the ANOVA is a measure used to decide whether the null 
hypothesis is true or false.  If true, the null hypothesis is to be accepted, and if false, the 
null hypothesis is to be rejected. The smaller the P-value the more confident we will be 
in rejecting the null hypothesis and declaring as significant the mean differences.  Since 
Pr>F = 0.0001 for treatment is less than 0.01, we reject the null hypothesis and conclude 
that the mean fruit lengths of the 3 treatments are significantly different at 1% level.  
 
A significance level denoted by “P<0.01” means that there is less than 1% probability 
(i.e., less than 1 in 100) that any observed differences among the treatment means 
could occur by chance, and are not due to real treatmentl effects, while “P<0.05” means 
that the probability is less than 5%, (or less than 5 in 100).   No matter what the 
experimental design is, the general criteria listed in Table 4 are used in determining the 
significance of treatment effects. 
 

Table 4.  Criteria for significance  
 
 
 
 
 
        
 
 
 
If the experimental error is large relative to the variation due to treatment, the Pr>F for 
treatment effect will be greater than 0.05. It indicates the failure of the test to detect 
significant differences, and the null hypothesis of no treatment mean differences, (Ho: 
T1=T2=T3), cannot be rejected.  However, even if the F-test is nonsignificant, it does not 
mean that all treatments are the same.  There are three possibilities why the F-test is 
not significant --- 1) the experimental error is large and treatment differences are large; 
2) the experimental error is large and treatment differences are small; 3) the 
experimental error is small and treatment differences are small. Whenever 
nonsignificant test is obtained, the experimental error and the treatment differences 
should be examined to determine if the trial is worth conducting all over again.   The 
trial can be repeated if case (1) above is observed.  Focus in the repeat experiment 
should be directed toward reducing experimental error so that the precision and power 
of the test are increased. 
 
The CV stands for “coefficient of variation” and should always be presented in the 
analysis.  It indicates the degree of precision of the experiment. It tells us how reliable 

Condition      Varietal Effect 
             
P < 0.01                   ** 
0.01 ≤ P < 0.05                * 
P ≥ 0.05,              ns 
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the experiment is.  Since the CV expresses the variation as a percentage of the mean, 
the lower the CV, the higher is the reliability of the experiment.   
 
The CV is computed as:  

 
There is no hard and fast rule on what to consider a high or low CV value.  The 
magnitude of the CV depends on the crop, type of experiment, and the character 
measured.  Only a researcher who has considerable experience working with a crop 
would have a good judgment on the acceptability of the CV value.   
 
Proper blocking minimizes differences among plots within a block and maximizes 
differences among blocks.  To determine if the goal of blocking is satisfied, we examine 
the significance of the rep effect in Table 3.  The Pr>F for the rep effect (P=0.1514) is 
greater than 0.05 which indicates that differences among rep means are not significant.  
The nonsignificant rep effect implies that the differences among blocks have not been 
maximized and therefore, the blocking used was not effective in reducing experimental 
error.  A new blocking criterion or orientation should be considered in the next trial if 
the same experimental area is going to be used. 
 
The data on disease incidence in Table 5 come from a greenhouse varietal screening 
trial.  The ANOVA results are shown in Table 6.  The objective was to evaluate the 
different pepper varieties for resistance to late blight.  The experiment used RCBD with 
three replications. 
 
                           Table 5.  Data on disease incidence  
 

Variety No. 
Rep 1 

 
Rep 2 

 
Rep 3 

 

066 0.20 0.32 0.60 

067 0.48 0.55 0.78 

1367 0.37 0.40 0.87 

375 0.45 0.60 0.75 

385 0.17 0.25 0.40 

535 0.05 0.10 0.30 

631A 0.08 0.15 0.22 

631B 0.36 0.47 0.67 

743 0.20 0.30 0.48 
 
    

100  x
X

EMS(%) CV 







=
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Tabel 6. ANOVA  RCBD 
 

SV df SS MS F Pr>F 
Replication (B) 2 0.4325 0.2162 53.20 ** <0.0001 

Variety (V)  
8 

 
0.7780 

 
0.0973 

 
23.93** 

 
<0.0001 

Error 16 0.0650 0.0041   

Total 26 1.2755    

    C.V. =  16.3 %, ** significant at P<0.01 
 

From  Table  6,    VMS  = 0.0973 
  BMS = 0.2162 
EMS   = 0.0041 

 
Fc for Varietal effect = VMS/EMS = 0.0973/0.0041 = 23.93 
Fc for Replication effect = BMS/EMS = 0.2162/0.0041 = 53.20 

 
 
Since Pr>F for variety is less than 0.01, we can reject the null hypothesis, (Ho: V1 = V2 
=…..= V9) and conclude that the mean disease incidences of the nine pepper varieties 
are significantly different at 1% level.  The replication effect is also highly significant 
which indicates that blocking in this case was effective in reducing experimental error. 
 
XX  Factorial experiment in RCBD  
 
In a factorial experiment laid out in RCBD, the source of variation accounted for by 
treatment sum of squares (TrSS) is further subdivided into components due to variations 
in each of the factors involved in the factorial experiment, and their interactions 
(Table7).  
 
 
  Table 7. Format ANOVA RCBD (multi factor)  

 

                               Randomized Complete Block Design  (RCBD)
SV df SS MS F
Replication r-1 BSS BMS = BSS / (r-1) BMS / EMS
Treatment t-1 TrSS TrMS = TrSS / (t-1) TrMS / EMS
   Factor1 (N)    (n-1) NSS NMS = NSS/(n-1) NMS / EMS
   Factor2 (V)    (v-1) VSS VMS = VSS/(v-1) VMS / EMS
   N x V   ( n-1)(v-1) NVSS NVMS = NVSS/(n-1)(v-1) NVMS / EMS
Error (r-1)(t-1) ESS EMS = ESS / (r-1)(t-1)
Total rt-1 TSS
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The following data on total yield (t/ha) of chili pepper (Table 8) were measured from an 
experiment laid out in RCBD with 3 rates of NPK (N) and 3 chili pepper varieties (V) as 
treatments, with 4 replications.  The objective of the experiment was to determine the 
effect of NPK and varieties on yield.  Based on the objective, the statistical hypotheses 
are:  
           Ho: N1 = N2 = N3,    V1 =V2=V3,   NxV interaction = 0 
           Ha: N1 ≠ N2 ≠ N3,    V1 ≠V2≠V3,   NxV interaction ≠ 0 
 
Table 8: Data on total yield (t/ha) of chili pepper using 3 different rates of NPK  
 
  

Variety   NPK rep Total yield (t/ha) 
1 30 1 20.47 
1 30 2 20.67 
1 30 3 21.08 
1 30 4 22.00 
1 20 1 26.43 
1 20 2 24.67 
1 20 3 18.51 
1 20 4 22.00 
1 10 1 16.04 
1 10 2 14.67 
1 10 3 12.08 
1 10 4 15.00 
2 30 1 39.34 
2 30 2 29.08 
2 30 3 29.11 
2 30 4 35.00 
2 20 1 17.23 
2 20 2 14.09 
2 20 3 11.95 
2 20 4 15.09 
2 10 1 39.59 
2 10 2 36.27 
2 10 3 19.38 
2 10 4 34.10 
3 30 1 33.51 
3 30 2 31.77 
3 30 3 29.12 
3 30 4 28.98 
3 20 1 31.13 
3 20 2 32.46 
3 20 3 26.96 
3 20 4 30.21 
3 10 1 29.88 
3 10 2 35.60 
3 10 3 23.24 
3 10 4 25.56 
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The ANOVA for data in Table 8 is shown in Table 9.  
 

 
Tabel 9. ANOVA for RCBD with factorial treatments consisting of 3 NPK treatments and 5 
varieties, in 4 replications. 
 

 
From Table 9,  NMS    =  340.7612 

       VMS    =  100.7897 
                                            NVMS  = 211.6497 

  EMS    =    10.7296 
 
Fc for main effect of NPK = NMS/EMS = 340.7612/10.7296 = 31.76 
Fc  for main effect of variety = VMS/EMS = 100.7897/10.7296 = 9.39 
Fc for NxV interaction effect= NVMS/EMS = 211.6497/10.7296 = 19.73 

 
 
Since Pr>F are < 0.01 for all effects, we reject the null hypotheses (Ho: N1= N2=N3, 
V1=V2=V3, NxV interaction = 0) and conclude that the main effect of NPK, the main effect 
of variety, and their interaction are all highly significant (P<0.01). Since NxV interaction 
is significant, the NPK means can only be compared separately for each variety; and 
similarly the variety means can only be compared at each rate of NPK applied.  
 
The replication effect is also highly significant which indicates that blocking was effective 
in reducing experimental error.  
 
XXI Analysis for Split Plot Design  
 
The analysis based on split plot design is done in two stages: the mainplot analysis and 
the subplot analysis.  The ANOVA format for the split plot design is shown in Table 10.  
As in RCBD with factorial treatments, the analysis provides information on the main 
effect of individual factors as well as the interaction effect between these two factors. 
 

SV df SS MS F Pr > F 
Replication 3 235.6637 78.5546 7.32** 0.0012 

Treatment 8 1729.7008 216.2126 20.15** <0.0001 

   NPK (N) 2 681.5225 340.7612 31.76** <0.0001 

   Variety (V) 2 201.5795 100.7897 9.39** 0.0010 

   N x V 4 846.5988 211.6497 19.73** <0.0001 

Error 24 257.5093 10.7296   

Total 35 2222.8737    

C.V. = 12.9%      
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The first-stage analysis is done on the mainplot factor.  The significance of the block 
effect and that of the main factor is tested using the error associated with the mainplot 
(EaMS).  The second-stage analysis involves the main effect of the subplot factor and its 
interaction with the mainplot factor.  Both effects are tested using the error associated 
with the subplot (EbMS). 
 

Table 10.  ANOVA format for split plot design 

 
The yield data shown in Table 11 come from an experiment laid out in split plot design 
with variety as mainplot factor and grafting (w/ and w/out) as subplot factor, in four 
replications. 
     

      Table 11.  Data from a trial based on split plot design 
Variety Grafting Rep Yield (t/ha 
TLCV15 Grafted 1 39.3 
TLCV15 Nografted 1 14.5 
FMT847 Grafted 1 40.4 
FMT847 Nografted 1 39.9 
CHT501 Grafted 1 26.2 
CHT501 Nografted 1 6.2 
TLCV15 Grafted 2 42.5 
TLCV15 Nografted 2 25.1 
FMT847 Grafted 2 41.6 
FMT847 Nografted 2 16.8 
CHT501 Grafted 2 25.9 
CHT501 Nografted 2 4.1 
TLCV15 Grafted 3 37.0 
TLCV15 Nografted 3 21.0 
FMT847 Grafted 3 41.1 
FMT847 Nografted 3 43.5 
CHT501 Grafted 3 26.8 
CHT501 Nografted 3 0.2 
TLCV15 Grafted 4 43.4 
TLCV15 Nografted 4 5.7 
FMT847 Grafted 4 41.5 

SV df SS MS F
Replication r-1 RSS RMS = RSS / r-1 RMS / EaMS
Mainplot  (A) a-1 ASS AMS = ASS / a-1 AMS / EaMS
Error (a) (r-1) (a-1) EaSS EaMS = EaSS / (r-1)(a-1)

Subplot  (B) b - 1 BSS BMS = BSS / b-1 BMS / EbMS
A x B (a - 1)(b - 1) ABSS ABMS = ABSS / (a-1)(b-1) ABMS / EbMS
Error (b) a (r-1) (b-1) EbSS EbMS = EbSS / a (r-1)(b-1)
Total rab-1 TSS
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FMT847 Nografted 4 16.1 
CHT501 Grafted 4 32.2 
CHT501 Nografted 4 13.0 

 
The result of the ANOVA (Table 12) indicates that both the main effects of grafting (G) 
and variety (V) are significant, at P<0.01 and P<0.05, respectively, while the interaction 
effect between variety and grafting (VxG) is not significant. Note that variety and rep 
effects are tested against EaMS while the main effect of grafting and its interaction with 
variety are tested against EbMS.  Note also that there are two CV values in a split plot 
design: the CV(a) for the mainplot and CV(b) for the subplot, which indicate the levels of 
precision associated with the corresponding factors.  The CV(b) is, generally, smaller 
than CV(a) which reflects the higher level of precision usually associated with the 
subplot factor. 

 
Table 12.  ANOVA based on Split Plot design for tomato yield (t/ha), with variety as       
mainplot factor and grafting as subplot factor.  

 

 
 
From Table 12,    Mainplot MS (variety) = 686.8054 

Subplot MS (grafting) = 2238.8017 
Interaction MS (variety x grafting) = 80.8154 
BlkMS (rep) = 11.7789 
EaMS   = 76.2626 
EbMS   = 56.2153 

 
 
Fc for Rep =   BlkMS/EaMS = 11.7789/76.2626 = 0.15 
Fc for Variety =  Mainplot MS/EaMS = 686.8054/76.2626 = 9.01 
Fc for Grafting =  Subplot MS/EbMS = 2238.8017/56.2153 = 39.83 
Fc for V x G =   Interaction MS/EbMS = 80.8154/56.2153 = 1.44 

 
 

SV df SS MS F Pr > F

Replication 3 35.3367 11.7789 0.15 ns 0.9231

Variety (V) 2 1373.6108 686.8054 9.01 * 0.0156

Error (a) 6 457.5758 76.2626

Grafting (G) 1 2238.8017 2238.8017 39.83 ** 0.0001

V x G 2 161.6308 80.8154 1.44 ns 0.2872
Error (b) 9 505.9375 56.2153
Total 23 4772.8933

C.V.(a)  = 32.5% ;     C.V. (b)  = 27.9%
**,* significant at P< 0.01 and P<0.05, respectively
ns not significant
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Since Pr>F for grafting (0.0001) is less than 0.01 and Pr>F for variety (0.0156) is less than 
0.05, we reject the null hypotheses, (Ho: G1 = G2 and Ho: V1 = V2 = V3), for the main 
effects of the two factors and conclude that the yields of the three tomato varieties are 
significantly different at P<0.05 and the effect of grafting is significant at P<0.01.  For the 
VxG interaction, the P>F = 0.2872 is greater than 0.05 indicating that it is not significant.  
The nonsignificant VxG interaction means that the effect of grafting on yield is the same 
for all three varieties and/or varietal effect is the same whether the plants are grafted or 
not.  The P>F for replication effect (0.9231) is greater than 0.05 and also not significant 
which indicates that blocking was not effective in reducing experimental error. 
 
XXII Analysis of Data from Multi-location Variety Trials. 
 
Before performing a combined analysis of data from different locations (Table 13), an 
ANOVA should be run for each location and the experimental errors examined for 
heterogeneity.  Depending on the results of these preliminary steps, the combined 
analysis can be carried out.   
 
              Table 13. SV and DF for individual and combined ANOVA 
 

RCBD 6 varieties,  4 reps, 2 locations 
     
Individual analysis         
                      Degrees of freedom (DF) 
Source of variation (SV)   Location1  Location2 
Rep  3  3 
Variety  5  5 
Error   15   15 
Total  23  23 
     
Combined analysis over 2 
locations     
SV   DF   
Location (L)  1   
Reps w/in location  6   
Variety (V)  5   
V x L  5   
Pooled error   30   
Total  47   

 
 
XXIII COMPARISON OF MEANS  
 
The ANOVA is not the final step in data analysis. To properly interpret the statistical 
results, the table of means based on significant main or interaction effects of 
treatments, including the standard errors of the means are needed. The table of means 
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rather than the ANOVA table is oftentimes the one required and presented in report 
write-ups.  
 
When the ANOVA is performed and the null hypothesis is rejected, then it can be 
concluded that the treatment means under consideration are significantly different.  
The ANOVA result, however, does not say which means are significantly different, and 
which are not.  After ANOVA, one then proceeds to comparison of means using any of 
the methods of comparing means.  
 
There are several methods of comparing means  
a) Planned pairwise comparison - usually performed for specific pairs of treatments 

identified before the start of the experiment 
Example: 

 - Control vs each of the fertilizer/starter solution treatments 
 - Traditional variety vs each of the recommended varieties 
 -  No N application vs different N-rates applied 

 
The Least Significant Difference (LSD) provides a single LSD value, at a prescribed level of 
significance, which serves as a boundary between significant and nonsignificant 
difference between any pair of treatment means.  It is recommended for use only when 
the F-test is significant.  The LSD is computed as follows: 
 
Any pair of varieties with mean difference greater than the LSD value is declared 
significantly different at the specified level of significance.  There is no need to manually 
compute the LSD value as most statistical software provides this as output. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                     LSDα = (tα) SED    
 

SED=standard error of the difference 
 

              SED   =     

2 (EMS)

r  
 tα , n  = the tabular t value at α level of significance, EMS is the error mean square, 

and n = error degrees of freedom from the ANOVA table. 
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Example: 
 

Table 14.  Mean comparison using LSD  
 

Organic fertilizer 
 

No of reps 
 

Mean yield 
 (t/ha) 

Mean difference 
 

Compost (C) 3 41.2  
Manure (M) 3 40.6 C-M = 41.2 – 40.6 = 0.6 ns 
Lime (L) 3 27.8 C-L = 41.2 – 27.8 = 13.4 ** 
   M-L = 40.6 – 27.8 = 12.8 ** 
LSD (0.05) = 3.9    
        (0.01) = 5.6    

** Significant at P<0.01 by LSD;    ns not significant 
 
Mean differences which are greater than the LSD values are statistically significant. 
Since the differences ‘C-L’ (13.4) and ‘M-L’’(12.8) are greater than LSD(0.01)=5.6, these 
differences are declared significant at P<0.01.  The difference ‘C-M’ (0.6) is considered 
not significant because it is less than LSD(0.05)=3.9 (Table 14). 
 
Several methods of  multiple comparisons such as the Duncan’s multiple range tests 
(DMRT), Tukey’s multiple-comparison method, Bonferroni, Scheffe’, etc., are generally 
available in most statistical packages and are used when all possible pairs of treatments 
are compared to identify pairs which are significantly different.  
 
Example: 
 -  Comparison of the yield performance of new hybrid varieties 
 -  Comparison of resistance to bacterial wilt of different tomato cultivars 

 
b) Unplanned pairwise comparison – performed when each pair of treatments is 

compared to identify pairs which are significantly different  
 
Several methods of  multiple comparisons such as the Duncan’s multiple range tests 
(DMRT), Tukey’s multiple-comparison method, Bonferroni, Scheffe’, Keuls, Newman, 
Tukey, etc., are generally available in most statistical packages and are used when all 
possible pairs of treatments are compared to identify pairs which are significantly 
different.  

 
Example: 
- Comparison of the yield performance of new hybrid varieties 
- Comparison of resistance to leaf blight of different tomato cultivars 
- Comparison of several herbicides in controlling weeds 

 
The Duncan’s Multiple Range Test (DMRT) is applicable to an unplanned pair 
comparison. It is useful in experiments that require the comparison of all possible pairs 
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of treatment means.  Unlike LSD, DMRT does not use a single value with which to 
compare all differences between pairs of means to declare significance.  In DMRT, the 
means are arranged in an array from highest to lowest (or lowest to highest), and 
varying comparison values -- larger for pairs of means which are farther apart in the 
array -- are used to compare all possible pairs of means.  
 
In Table 15, the mean yields of the different varieties have been grouped by DMRT in  
 
 
 
 
 
 
 

several overlapping and non-overlapping groups, with means arranged in descending 
order.  Means with common letters are not significantly different at 5% or 1% levels of 
significance.  Andulus had the highest mean yield and the only variety assigned the 
letter “a”, which indicates that it is significantly higher than the yields of all other test 
varieties. The mean yields of PV2, BlueStar, PV3, and 9852-191 are not significantly 
different from each other because they all have the common letter “b”,  but are 
significantly higher than the rest of the varieties except 9852-191 which has yield not 
significantly different from PBC438, PV1, and PBC843 because of their common letter, 
“c”.  PV4 and PV5, both with common letter ”d”, gave yields that are not significantly 
different from each other, but significantly lower than the rest of the varieties tested.   
 
 What method to use is a matter of choice. Multiple range tests are generally not 
recommended for mean comparison when treatments are structured. To compare 
treatments with structure, it is best to use LSD and orthogonal contrasts based on the 
partitioning of treatment sum of squares (PSS).  PSS is not covered in this course. 
 

Variety No. of reps Mean Yield 1/ DMRT Grouping 
Andulus 3 99.0 a 
PV2 3 87.3 b 
BlueStar 3 83.7 b 
PV3 3 83.7 b 
9852-191 3 75.7 bc 
PBC438 3 69.0 c 
PV1 3 68.3 c 
PBC843 3 63.7 c 
PV5 3 49.0 d 
PV4 3 47.3 d 
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DETERMINATION OF THE NUMBER OF REPLICATIONS 1 

For a given experiment, the number of replications required depends on (a) the level of 
experimental error expected to be encountered, and (b) the degree of precision desired; 
both of which are based on the most important response character (say, yield). 

The magnitude of an experimental error can be represented by the coefficient of 
variation (cv); and the degree of precision represented by either the standard error of 
the treatment mean (s.e. x ) or the standard error of the treatment difference (s.e.d.) 
 
 

For a RCB design, the two standard errors are computed as: 

                            s.e. x     =    
r
s 2

     

and    

                                  s.e.d.    =  
r
s 22     

where   s2 = error mean square in the ANOVA  and r = no. of replications   
 

Since   cv = 
x

s100   , the standard error of the mean can be written as: 

         s.e. x     =  
r
xcv

100
))((  

or  

                            r  = 
( )( )
( )







xes
xcv
..100

     . . . . . . .  . . . . . . (1)   

where x  = grand mean / dimana x  = rata-rata keseluruhan 

2 

Appendix 
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And, the standard error of the treatment difference can be written as 

                            s.e.d.  =   2 
( )( )

( )






r
xcv

100
      

 

or                       r  = 
( )( )
( )






...100 des

xcv      . . . . . . .  . . . . . . (2) 

 

Example  1. For an experiment with a RCB design in which the expected cv of yield is 
10%, the mean yield level is 6 t/ha.  The researcher wishes to have the standard error of 
a treatment mean of not more than 0.3 t/ha; the number of replications needed can be 
computed, using equation (1) above, as follows:  
 

    r  = ( )( )
( )






3.0100

610          =    4 

 

 where cv  = 10 %;      x   =  6 t/ha;     and  s.e. x   = 0.3 t/ha 

Example 2.  Assuming the same experiment as in Example 39 but the researcher wishes 
to prescribe the degree of precision in terms of least significant difference (LSD) that can 
be detected between any pair of means of 0.8 t/ha. In this case the s.e.d. value should 
first be approximated as:  

  s.e.d =    
2

LSD    =    
2
8.0     =   0.4 

From equation (2)  

              r  =   2 ( )( )
( )






4.0100

610          =    4.5   or   5 

 
 Source: Biometrics Unit, IRRI 

 

2 

2 
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