Plant Pathogenic Bacteria A Basic Guide to Identification

Fen Beed Regional Director for East and Southeast Asia and Oceania

29th September, 34th IVTC Module 1

Methods, processes and end-points [2]

- Phytosanitary testing
 - Pre-described test procedure for known crop / pest combinations only
 - Limited need for wider inclusion of other pest knowledge; can be achieved by non-specialists
 - Require specific, dedicated infrastructure
 - Known outcome, with statistical confidence
 - Primarily driven by EU directives

Methods, processes and end-points [3]

- Identification of unknowns
 - Receiving of plant / pest combinations of any type
 - Need to be inclusive of all pest types [entomological, mycological, bacterial, viral]
 - Requires expert knowledge, infrastructure and access to reliable information resources
 - Driven by national demand for providing broad services in plant health as supports commercial interests

Methods, processes and end-points [4]

Research

- Responsive to demand
- Need to be inclusive of all pest types [entomological, mycological, bacterial, viral]
- Requires expert knowledge, infrastructure and access to reliable information resources
- Driven by national demand for providing broad services in plant health as supports commercial interests

Methods for bacterial identification

- Biochemical tests traditional methods
- Formatted biochemical tests
 - API strips
 - Biolog
- GC Fatty acid profiles MIDI system
- Serological immunological methods
- DNA methods
 - DNA homology
 - 16S rDNA
 - Fingerprinting

Biochemical tests

Biochemical tests – example 1

- Pantoea stewartii
 - Non-motile
 - Colonies do not show symplasmata or inclusion
 - Negative for production of H₂S from cysteine, acetone, phenylalanine deaminase, nitrate reductase and gelatinase
 - Acid is produced from melibiose; non-acid from dulcitol, maltose, rhamnose or starch

Biochemical tests – example 2

- Ralstonia solanacearum
 - Non-fluorescent pseudomonas with polar tuft flagella
 - Cells non-pigmented, but brown diffusible pigment often produced
 - PHB is accumulated
 - Levan not formed from sucrose
 - Gelatin hydrolysis weak
 - Starch and aesculin not hydrolysed
 - Nitrate reduced by nearly all strains; many produce gas [denitrifying]
 - No growth at 40C
 - Oxidase positive
 - Arginine dihydrolase negative
 - Most strains produce tyrosinase
 - Light or no growth in broth containing 2% NaCl; no growth at 40C
 - Carbon sources used for growth: acetate, aconitate, L. alanine, D-alanine, γaminobutyrate, asparagine, L-aspartate, benzoate, butyrate, citrate, fumarate, gluconate, D-glucose, L-glutamate, glycerol, L-histidine, β-hydroxybutyrate, αketoglutarate, L-malate, mucate. L-proline, proionate, pyruvate, saccharate, succinate, sucrose and trehalose

Dichotomous key – some key biochemical tests

Gram test [Gram –ve and +ve bacterium]

- Gram –ve
 - Anaerobic growth
 - Yellow colonies on YDC
 - Fluorescent pigment
 - Urease
 - Growth at 33C and 40C
 - Growth on D1M agar
 - Utilization of arginine and betaine

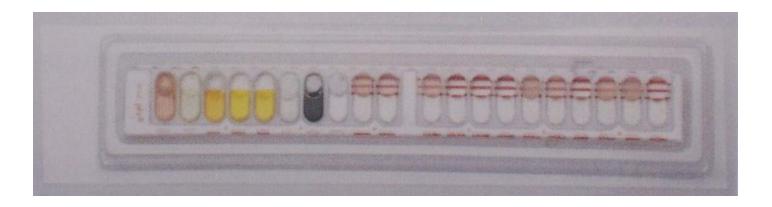
- Gram +ve
 - Endospores formed
 - Anaerobic growth
 - Ariel mycelium

The LOPAT tests for fluorescent *Pseudomonads*

L	0	Ρ	А	Т	Group	Example
+	-	-	-	+	la	P. syringae
-	-	-	-	+	lb	P. savastanoi
-	-	+	-	+	II	P. viridiflava
-	+	-	-	+		P. cichorii
+	+	+	+	-	IVa	P. marginalis
-	+	+	+	-	IVb	P. fluorescens complex
-	+	-	+	-	Va	P. tolaasii
+	+	-	+	-	Vb	P. fluorescens complex

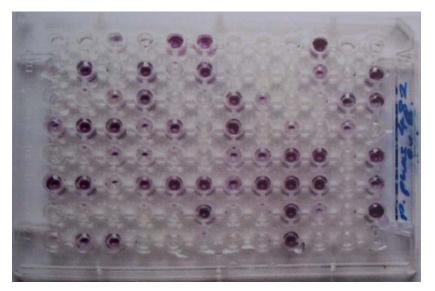
Levan production / oxidase reaction / Potato Rot / Arginine dihydrolose production / tobacco hypersensitivity – LOPAT – p26 Phytobacteriology book

Biochemical tests


- Advantages
 - Is not requiring of expensive equipment and searchable data bases
- Limitations
 - Methods are many, some sequential and time consuming
 - Reagent list for tests is extensive and prepared media is to be aliquoted into many different formats
 - Many tests give variable strain specific results and some tests are unreliable
 - Technicians need to be very familiar with methods and competent in their use

Biochemical formatted platforms

- Takes the biochemical tests and places them on a more convenient format
- Two main commercial products
 - API strips [http://industry.biomerieux-usa.com/industry/food/api/index.htm]
 - Biolog [http://www.biolog.com/main.html]
- Results achieved within 48hrs
- Results [+ & -ve data] fed into library of described strains
- Similarity values on most likely identification
- Requires judgement over identifications presented



API

- Each well contains a different substrate
- Results are recorded as either a substrate colour change or as growth

The Biolog system

- The Biolog system presents an extended array of biochemical tests
- A positive result is seen as a purple colour change
- The plate can be read by eye or by a plate reader

A1 Water	A2 a- cyclodextrin	A3 dextrin	A4 glycogen	A5 tween 40	A6 tween 80	A7 N-acetyl-D- galactosamine	A8 N-acetyl-D- glucosamine	A9 adonitol	A10 L- arabinose	A11 D- arabitol	A12 cellobiose
B1 i-erythritol	B2 D-fructose	B3 L-fucose	B4 D-galactose	B5 gentiobiose	B6 α-D-glucose	B7 m-inositol	B8 a-D-lactose	B9 lactulose	B10 maltose	B11 D-mannitol	B12 D-mannose
C1 D-melibiose	C2 β-methyl D-glucoside	C3 D-psicose	C4 D-raffinose	C5 L-rhamnose	C6 D-sorbitol	C7 sucrose	C8 D-trehalose	C9 turanose	C10 xylitol	C11 methyl pyruvate	C12 mono-methyl succinate
D1 acetic acid	D2 cis-aconitic acid	D3 citric acid	D4 formic acid	D5 D-galactonic acid lactone	D6 D- galacturonic acid	D7 D-gluconic acid	D8 D-glusaminic acid	D9 D-glucuronic acid	D10 a-hydroxy butyric acid	D11 β-hydroxy butyric acid	D12 y-hydroxy butyric acid
E1 p-hydroxy phenylacetic acid	E2 itaconic acid	E3 a-keto butyric acid	E4 α-keto glutaric acid	E5 α-keto valeric acid	E6 D, L- lactic acid	E7 malonic acid	E8 propionic acid	E9 quinic acid	E10 D-saccharic acid	E11 sebacic acid	E12 succinic acid
F1 bromo succinic acid	F2 succinamic acid	F3 glucunoramide	F4 alaninamide	F5 D-alanine	F6 L-alanine	F7 L-alanyl -glycine	F8 L-asparagine	F9 L-aspartic acid	F10 L-glutamic acid	F11 glycyl L- aspartic acid	F12 glycyl L- glutamic acid
G1 L-histidine	G2 hydroxy L-proline	G3 L-leucine	G4 L-ornithine	G5 L- phenylalanine	G6 L-proline	G7 L-pyroglutamic acid	G8 D-serine	G9 L-serine	G10 L-threonine	G11 D, L-carnitine	G12 y –amino butyric acid
HI urocanic acid	H2 inosine	H3 uridine	H4 thymidine	H5 phenyl ethylamine	H6 putrescine	H7 2-amino ethanol	H8 2,3- butanediol	H9 glycerol	H10 D, L- a- glycerol phosphate	H11 glucose-1- phosphate	H12 glucose- 6-phosphate

Biochemical formatted platforms [Biolog]

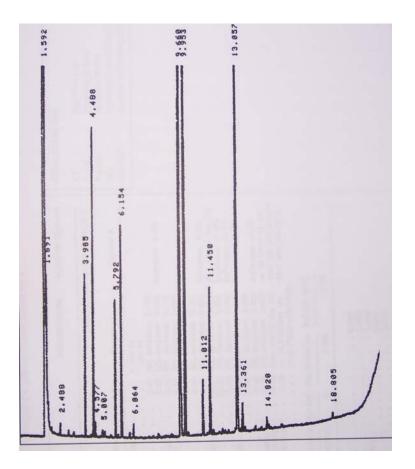
- Advantages
 - Is not requiring of expensive equipment
 - System is quick, reproducible and easy to perform
 - Data can be shared between laboratories
 - Can provide a reasonable identification to the genus and species level
- Limitations
 - Requires investment [access] to the library
 - Has limitation in resolving below species level [pathovar separation]
 - Library stronger on human microbials than plant pathogenic bacteria

Fatty acid analysis – the Midi system

Fatty acids

- Gram-negatives
 - Unique hydroxy patterns
 - Some cyclopropanes
 - Few branched acids
- Gram positives
 - Many branched acids
 - Very few hydroxy and cyclopropane acids.

The Midi system


- Commercial and / or lab produced [http://www.midi-inc.com/]
- Based on comparisons of types and amounts of acids
- Interrogates library for identification
- Typical "return":

NCPPB Rev 3.0Agrobacterium biovar 1 0.814Agrobacterium biovar 2 0.567Agrobacterium biovar 3 [vitis] ... 0.316

Fatty acid extraction process

- Culture Cells [i.e. 24hr on TSBA]
- Harvest Cells
- Saponify Lipids
- Methylate Fatty Acids [FAMEs]
- Extract and Purify
- GC analysis
- Comparison to library

MIDI system print outs

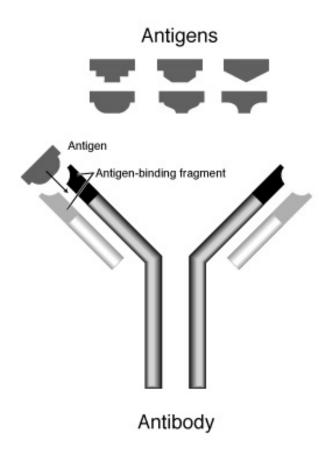
Area A	r/Ht	Respon	BCL.				
			DCI,	Nane	0.000	Consent 1	Comment 2
664512 0	011		7.021				
		10.00					
				12:0	5.03	SCL deviates 0.000	Reference 0.001
				11:0 190 308	0.24	ECL deviates 0.001	
		1.015				ECL deviates 0.001	
11480 0	.038	0.996		12:0 208	2.40	ECL deviates 0.000	
		0.989	13.455	12:0 308	3.76	ECL deviates 0.001	
1216 0	.038	0.978	14.000	14:0	0.25	ECL deviates -0.000	Reference 0.001
165296 0	.046	0.954	15.819	Sum In Feature 3	33.17	ECL deviates -0.003	16:1 w7c/15 iso 20H
141496 0	.046	0.953	16.001	16:0	28.35		Reference 0.002
6136 0	.049	0.949	16.628	17:0 ISO	1.22		Reference -0.001
16376 0	0.049	0.948	16.889	17:0 CYCLO	3.26		Reference 0.001
94856 0	0.050	0.946	17.824	18:1 w/c	18.87		
3184 0	0.050	0.946	18.000				Reference -0.001
1384 0	1.051	0.945	18.848				un 18.846/19:1 woc
165296 .				SUMMED FEATURE 3	33.17		15:0 ISO 20H/16:1w7
1384 .				SUMMED FEATURE 7	0.28		19:1 w60/.846/19cy
						19:0 CYCLO w10c/19w0	
Total A	ma l	Samed Are	ea 🕺 Nas	eci Total Annt Nbr R	ef DCL	Deviation Ref ECL Sh	ift
495	200	40.52	60 100.	.00 475532	6	0.001 0.	001
	655 0 10872 0 23184 0 600 0 1112 0 600 0 1112 0 600 0 11480 0 6136 0 6136 0 6136 0 6136 0 94856 0 94856 0 1384 0 1386 0 1386 0 1386 0 1386 0 1386 0 1386 0 1386 0 1386 0 1386	65 0.025 10872 0.032 23184 0.035 1112 0.034 600 0.037 11480 0.038 18088 0.039 1216 0.034 15296 0.046 6136 0.049 6136 0.050 3184 0.050 1384 0.050 1384 0.050 1384 0.050 1384 0.050 1384 0.050 1384 0.050 1384 0.050 1384 0.050	656 0.026 10872 0.032 1.053 23184 0.035 1.031 1112 0.034 1.028 600 0.037 1.015 1480 0.038 0.996 12088 0.039 0.996 1216 0.038 0.976 1216 0.038 0.978 165296 0.046 0.954 14495 0.046 0.949 16376 0.049 0.949 6136 0.950 0.946 94856 0.050 0.946 1384 0.050 0.945 105296 - - 1384 0.451 0.945 165296 - - 1384 - - Total Arca Samed Arc	655 0.025 8.942 10872 0.032 1.053 11.424 23184 0.035 1.031 12.000 1112 0.035 1.031 12.000 1112 0.035 1.031 12.000 600 0.037 1.015 12.485 11480 0.038 0.996 13.177 18088 0.039 0.996 13.455 1216 0.038 0.996 13.455 1216 0.038 0.978 14.630 165296 0.046 0.953 16.001 16326 0.049 0.948 16.689 94856 0.050 0.946 17.624 1384 0.050 0.946 18.000 1384 0.051 0.945 18.488 165296 1384 1384 <td< td=""><td>656 0.026 8.942 10872 0.032 1.053 11.424 10:0 30H 23184 0.035 1.031 12.000 12:0 1112 0.034 1.028 12.000 11:10 150 30E 600 0.037 1.015 12.485 unknown 12.484 11480 0.038 0.996 13.177 12:0 20E 1216 0.038 0.996 13.455 12:0 30H 1216 0.038 0.994 13.455 12:0 30H 165296 0.046 0.954 15.819 Sum In Feature 3 14195 0.046 0.954 16.628 17:0 120 16376 0.049 0.949 16.628 17:0 120 16376 0.049 0.949 16.628 17:0 120 16376 0.049 0.949 16.628 17:0 120 16376 0.049<!--</td--><td>656 0.026 8.942 </td><td>656 0.026 8.942 </td></td></td<>	656 0.026 8.942 10872 0.032 1.053 11.424 10:0 30H 23184 0.035 1.031 12.000 12:0 1112 0.034 1.028 12.000 11:10 150 30E 600 0.037 1.015 12.485 unknown 12.484 11480 0.038 0.996 13.177 12:0 20E 1216 0.038 0.996 13.455 12:0 30H 1216 0.038 0.994 13.455 12:0 30H 165296 0.046 0.954 15.819 Sum In Feature 3 14195 0.046 0.954 16.628 17:0 120 16376 0.049 0.949 16.628 17:0 120 16376 0.049 0.949 16.628 17:0 120 16376 0.049 0.949 16.628 17:0 120 16376 0.049 </td <td>656 0.026 8.942 </td> <td>656 0.026 8.942 </td>	656 0.026 8.942	656 0.026 8.942

- GC trace [left]
- Library analysis [above]

Key acids from 4 genera

Acid	Acidovorax	Ralstonia	Pseudomonas	Burkholderia
10:0 3OH	+		+	+
12:0 2OH			+	
12:0 3OH			+	
14:0 3OH		+	+	+
16:0 2OH		+		+
16:0 3OH			+	+
16:1 2OH		+		
18:1 2OH		+		+

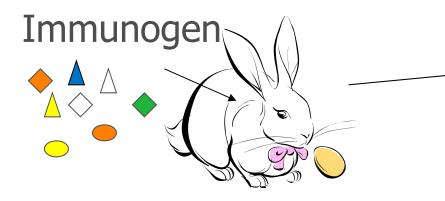
Fatty acid analysis


- Advantages
 - System is quick, reproducible and easy to perform
 - Data can be shared between laboratories
 - Can provide a reasonable identification to the genus and species level
- Limitations
 - Requires investment in GC equipment and MIDI library
 - Has limitation in resolving below species level [pathovar separation]
 - Library stronger on human microbials than plant pathogenic bacteria

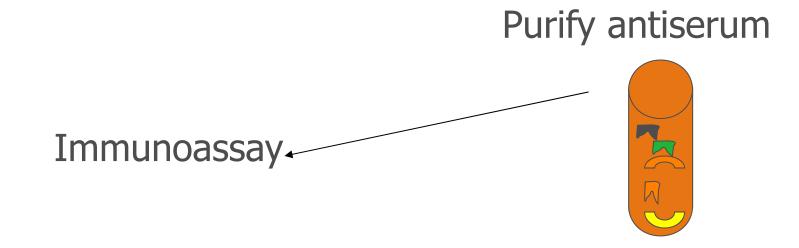
Serological approaches

Serological approaches

- Rapid
- Sensitive
- Specific
- Diagnose diseases


Immunoassays are based on antibodies....

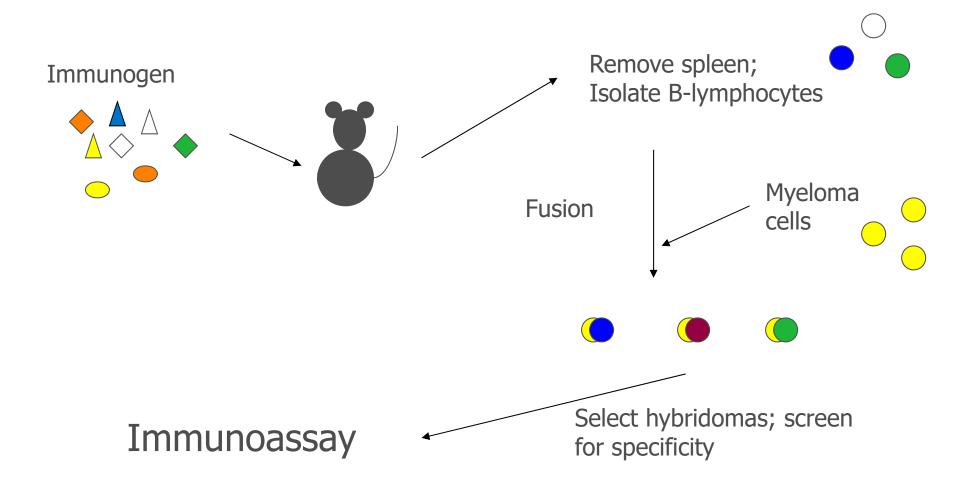
- Mammals produce antibodies that specifically recognize binding sites (epitopes) on proteins, glycoproteins, lipopolysaccharides, carbohydrates (antigens)
 - Polyclonal antibodies
 - Monoclonal antibodies
- Antibodies specifically bind antigens
- Bound antibodies are detected with various markers


Polyclonal Antibodies

- Immunogens (preparations containing antigens that are used to immunize an animal)
 - Various degrees of purification of immunogens
 - Whole cells
 - Cell (surface) washings
 - Virus particles
 - Broken cells
 - Purified cell components
- Immunogens injected into animals for antibody production

Polyclonal antibody production

Collect blood; separate serum


Characteristics of polyclonal antisera

- High sensitivity
- Varying specificity depending on purity of immunogen/number of epitopes
- May vary from batch to batch

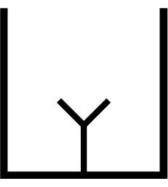
Monoclonal antibodies

- Single type of antibody
- Highly specific
 - Recognize single epitope
- Sensitivity varies
- Produced by hybridoma cell lines that are theoretically immortal

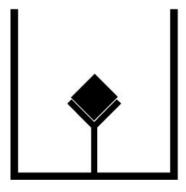
Monoclonal antibody production

Immunoassay formats

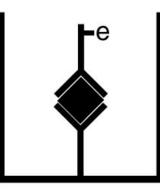
- Enzyme-linked immunosorbent assay (ELISA)
 - Enzyme conjugated to antibody = marker
 - Alkaline phosphatase
 - Peroxidase
- Lateral flow immunoassay
 - Ab-Ag binding occurs as mixture flows through solid phase in liquid
- Immunofluorescence
 - Fluorescent molecule marks Ab-Ag reaction

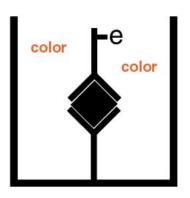

ELISA

- Positive reaction indicated by enzymatic reaction with chromogenic substrate = color change
 - Antigen capture/plate-trapped antigen
 - Antigen bound to solid phase
 - Indirect vs. direct
 - Direct = detecting antibody conjugated with enzyme
 - Indirect = enzyme conjugated to secondary antibody
 - Sandwich ELISA (double antibody, triple antibody)

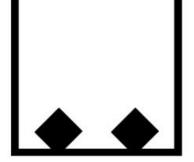

Direct, Double Ab Sandwich ELISA

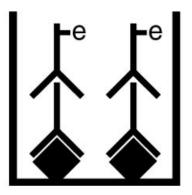
DAS-ELISA


Step 1 Antigen-specific antibody is attached to a solid-phase surface

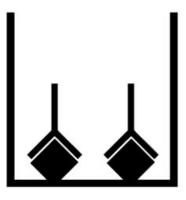

Step 2 Test specimen is added, which may or may not contain the antigen

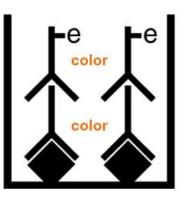
Step 3 An enzyme-labeled antibody specific to the antigen is added (conjugate)


Step 4 Chromogenic substrate is added, which in the presence of the enzyme, changes color.

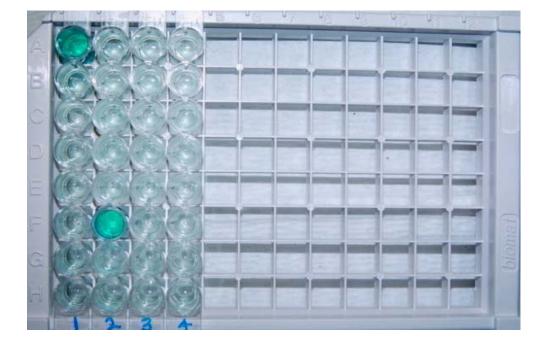

Indirect, Plate-trapped Antigen ELISA

Primary Ab specific to Antigen


Secondary Ab produced in a different species, e.g. goat - specific to primary Ab Step 1 Specific antigen is attached to a solid-phase surface

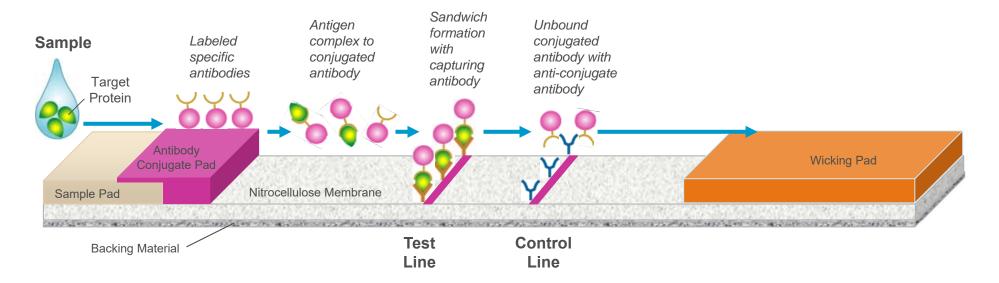

Step 3 An enzyme-labeled antibody specific to the test antibody is added (conjugate)

Step 2 Test specimen is added, which may or may not contain the antibody

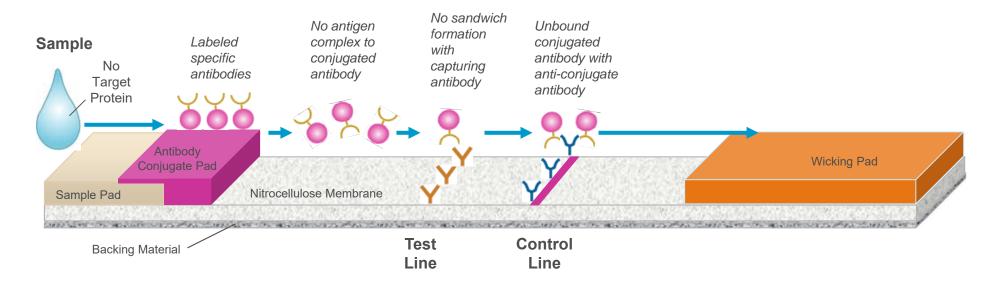


Step 4 Chromogenic substrate is added, which in the presence of the enzyme, changes color.

Multiwell Immunoasay


- Many commercially available
- Most detect various viruses
- Also for bacteria, fungi

Immunostrip (Lateral Flow) Assays


- Very fast 3-5 minutes
- Sensitive
- Some are available commercially
- Extracts diffuse through paper strips
- Marker may be gold microparticles

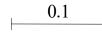
LFD Cross-Sectional View Positive Result

Environlogix, Inc.

LFD Cross-Sectional View Negative Result

Environlogix, Inc.

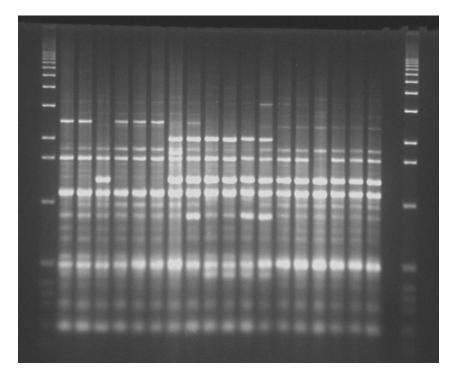
DNA approaches


DNA sequencing

- 16s rDNA sequencing
 - One example: 27F and 1492R primers amplification followed by 518F and 800R primers
 - Stringent annealing conditions
 - BLAST search for nearest relatives
 - Assemblage of closest relatives

Sequencing of other genes

- Whilst 16S rDNA is the normal target for sequencing, for some bacteria insufficient variation may be present to allow differentiation below the species level [pathovar level]
- For these bacteria different target sequences can be used which present more variation
 - Examples include:
 - Hrp genes
 - Gyrase gene
 - 16-23S rDNA interspacer region


Sequence alignment

- Gyrase sequence data for Xanthomonas sp.
- Sequences increasingly available on GeneBank
- Provides pathovar level differentiation

x-camp pv musacearum W9616 x-camp pv musacearum 392224 x-camp pv musacearum NCPPB2005 x-camp pv musacearum W9615 x-camp pv musacearum W9624 x-vas. pv vascolurum NCPPB889 x-vas. pv vascolurum NCPPB206 x-vas. pv vascolurum NCPPB895 x-vas. pv vascolurum NCPPB702 x-camp pv musacearum W9623 x-camp pv musacearum CABI392966 x-camp pv musacearum 014/LUW/05 x-camp pv musacearum 392223 91% x-camp pv musacearum KY44 x-vas. pv holcicola NCPPB2417 96% x-vas. pv holcicola NCPPB1060 x-ory pv oryzae –AY055110 100% 100% - x-camp-vascatoria 85-10 X. axono. pv citri X. aboricola pv celebensis NCPPB1832 x. camp. pv campestris NCPPB528 100% x. camp. pv campestris 33913 x. camp. pv campestris 8004 Streptomyces roseochromogenes subs. oscitans

DNA fingerprinting

- By comparing DNA fingerprint of unknown to known strains an identification can be achieved
- Is particularly appropriate for pathovar level identifications
- Require access to known strains [genetic resource collection]

DNA approaches to identification

- Advantages
 - Commercial services available for sequencing
 - Data can be shared between laboratories
 - By a combination of approaches identification to the genus, species and pathovar level can be achieved
- Limitations
 - Requires investment in PCR and gel equipment
 - Cost of molecular consumables is high
 - Technically demanding; PCR is notorious for 'random' problems