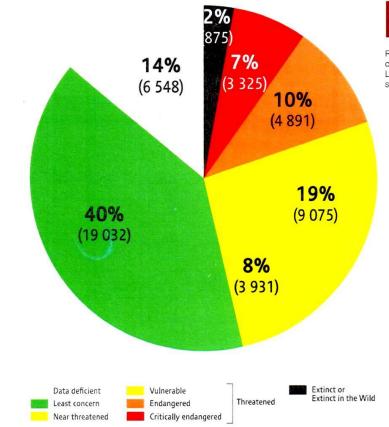
Introduction to the Conservation of PGR terminology, ex situ and in situ conservation, germplasm exchange

Andreas W. Ebert Genebank Manager & Global Theme Leader – Germplasm AVRDC – The World Vegetable Center

34th International Vegetable Training Course Module 1: Vegetables: From Seed to Table and Beyond 15 September 2015 AVRDC Research and Training Station ESEA Kamphaeng Saen, Nakhon Pathom, Thailand

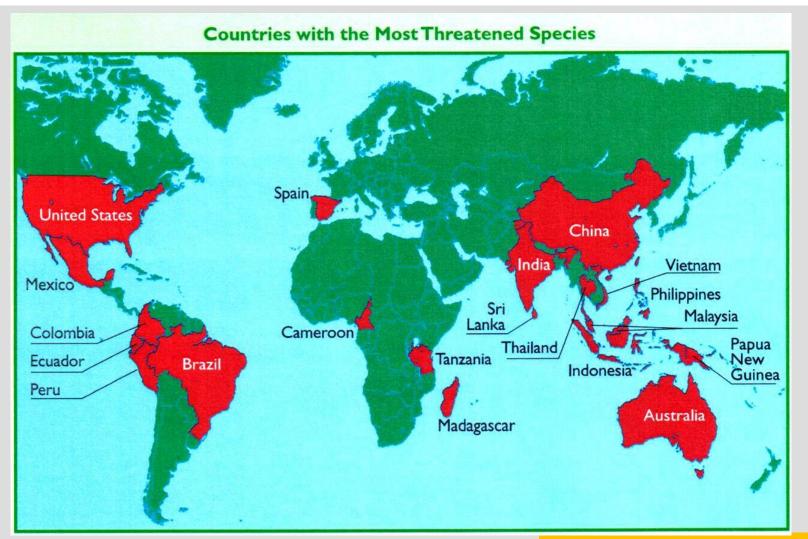
Outline of presentation


> Terminology

Steps in germplasm and genebank management: maintaining accession identity; storage conditions; viability monitoring; characterization; core collections; screening and evaluation; documentation – linking conservation with use; safety duplication; germplasm exchange

About 36% of assessed species (47,677) on earth are threatened by extinction

FIGURE 3 Proportion of species in different threat categories


Proportion of all assessed species in different categories of extinction risk on the IUCN Red List, based on data from 47,677 species. Source: UCN

Global Biodiversity Outlook 3 (2010)

Countries with the most threatened species

CQ Global Researcher (2012)

More than 1-fifth of world's plants threatened by extinction

Science Daily - Sept. 29, 2010

Terminology

Keywords	Description
Access & Benefit Sharing	One of 3 objectives of CBD: "fair and equitable sharing of the benefits arising out of the utilization of GR, including by appropriate access to GR and by appropriate transfer of relevant technologies, taking into account all rights over those resources and to technologies, and by appropriate funding".
Accession	Plant material (plant, seed, or vegetative parts) collected and assigned a number to maintain its identity during evaluation, increase, and storage. The term 'accession' is always used in connection with genebanks or genetic resource collections.
Agrobiodiversity	The variability among living organisms associated with the cultivation of crops and rearing of animals, and the ecological complexes of which those species are part. Diversity within and between species and at the ecosystem level
Agro-ecological knowledge	Farmers' knowledge of ecological interactions within the farming system

Terminology (2)

Keywords	Description				
Alien species	A species growing outside of its natural range as a result of intentional or accidental dispersal by human activities (exotic or introduced species)				
Ancestor	An organism from which later individuals or species evolved				
Biodiversity	The diversity of life in all forms – of species, genetic variations within one species, and of ecosystems				
Biome	A major portion of the living environment of a particular region (fir forest, grassland)				
Biotechnology	Technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use				
Buffer zone	The region adjacent to the border of a protected area; a transition zone between areas managed for different objectives				
Center of crop diversity	Geographical area containing a high level of genetic diversity of crop species in <i>in situ</i> conditions				

Terminology (3)

Keywords	Description			
Center of origin	Geographical area where a plant species, either domesticated or wild, first developed its distinctive properties			
Collection	A collection of plant genetic resources for food and agriculture maintained <i>in situ, ex situ</i> , on farm, <i>in vitro</i>			
Connectivity	Structural and functional connectivity is equal to habitat connectivity and is measured by analyzing landscape structure			
Conservation	System of genetic resources maintained			
Conservation status	The sum of influences acting on a natural habitat and its typical species that may affect its long-term distribution, structure and functions as well as the long-term survival of its typical species			
Corridor (ecological)	A strip of a particular type of land that differs from adjacent land on both sides with important ecological functions (conduit, barrier and habitat)			
Domesticated species	Species in which the evolutionary process has been influenced by humans to meet their needs. Sin. Cultivated species.			

Terminology (4)

Keywords	Description
Ecosystems	Dynamic, complex of plant, animal and micro-organism communities and their non-living environment interacting as a functional unit
Ecosystem services	The ecological, social and economic benefits people obtain from ecosystems. These include provisioning of food and water; regulating services such as flood and disease control; cultural services such as spiritual and recreational benefits, supporting services such as nutrient cycling that maintain the conditions for life on earth.
Ecotourism	Travel undertaken to witness sites or regions of unique natural or ecologic quality
Ecotype	A type or subspecies of life that is especially well adapted to a certain environment
Endemic species	A species which is only found in a given region or location and nowhere else in the world.
Evolution	A gradual genetic change in organisms from generation to generation

Terminology (5)

Keywords	Description			
Ex situ conserv.	Conserving biological diversity outside their natural habitats			
In situ conservation	System of conservation of biological diversity inside their natural habitats			
Extinction	Evolutionary termination of a species caused by the failure to reproduce, failure to adapt to environmental and human-induced change			
Fauna	All the animals found in a given area			
Flora	All the plants found in a given area			
Habitat fragmentation	Breaking up of remaining habitat into smaller units			
Gene	The functional unit of heredity; the part of the DNA molecule that encodes a single enzyme or structural protein unit			
Genebank	Facility established for ex situ conservation of individuals (seeds), tissues, or reproductive cells of plants or animals			

Terminology (6)

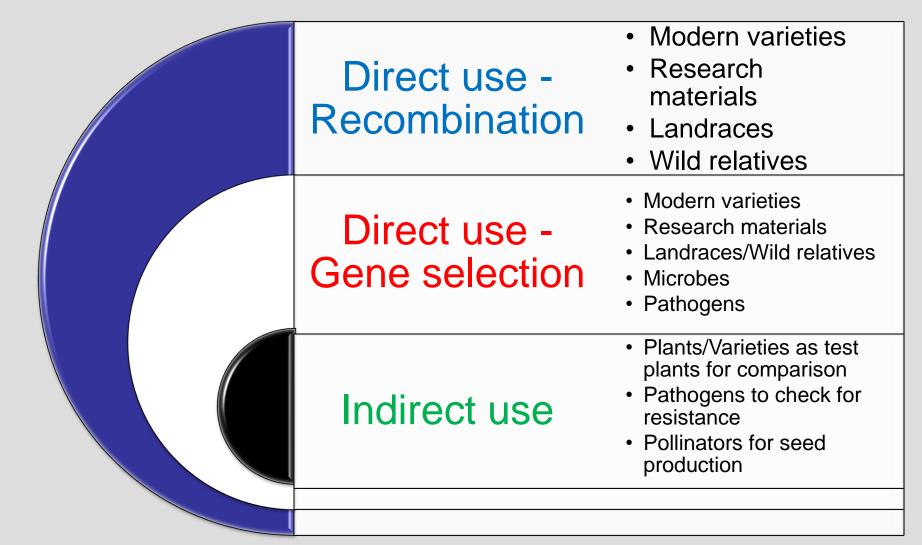
1

a Bin

Keywords	Description			
Genetic diversity	Heritable variation within & among populations which is created, enhanced or maintained by evolutionary/selective forces			
Genetic engineering	Changes in the genetic constitution of cells resulting from the introduction or elimination of specific genes through molecular biology techniques			
Genetic erosion	Loss of individual genes and of combinations of genes, such as those found in locally adapted landraces. Main cause is the replacement of local varieties by modern varieties. Other causes include the emergence of new pests, weeds and diseases, environmental degradation, urbanization and land clearing through deforestation and bush fires			
Genetic material	Any material of plant, animal, microbial or other origin containing functional units of heredity			
Gen. resources	Genetic material of actual or potential value			
GMO	Organism into which one or more genes from an outside source that contains coding for desired characteristics (herbicide resistance) has been inserted			

Terminology (7)

Keywords	Description				
Hotspot	Area on earth with unusual concentration of (endemic) species, often under serious threat by people				
Indigenous knowledge (IK)	IK is the local knowledge that is unique to a given culture or society. Basis for local-level decision making in agriculture, health care, food preparation, education, natural resource management				
Landrace	An early, cultivated form of a crop species, evolved from a wild population, generally composed of a heterogeneous mixture of genotypes				
Native species	Flora and fauna species that occur naturally in a given are or region (indigenous species)				
On farm conservation	System of conservation of biological diversity through farming				
Overexploitation	Harvesting of specimens of flora and fauna species from the wild is out of balance with natural reproduction – species becomes extinct				


Terminology (8)

Keywords	Description				
Protected area	Geographically defined area meant to achieve specific conservation objectives				
Resilience	A measure of resistance to disturbance and the speed of return to the equilibrium state of an ecosystem				
Restoration	Return of an ecosystem or habitat to its original community structure, natural complement of species, and natural functions				
Seedbank	Facility designed for the ex situ conservation of individual plant varieties through seed preservation and storage				
Species	A group of organisms capable of interbreeding freely with each other but not with members of other species				
Sustainable farming	Farming that makes use of nature's good and services while producing sufficient yield in an economically, environmentally, and socially rewarding way, preserving resources for future generations				
Wild species	Organisms captive or living in the wild that have not yet been subject to breeding to alter them from their native state.				

۲

The World Vegetable Center

Use of genetic resources

Germplasm and genebank concept

HYV	 Breeding success of HYV at beginning of 20th century caused replacement and genetic erosion of landraces
PGR	 Sir Otto Frankel considered landraces as stores of genetic variability; he coined the term 'genetic resources' in 1968 and called upon breeders to preserve the genetic resources of crop plants
Genebanks	 Establishment of genebanks for long-term and short-term storage of germplasm Cryopreservation for storage of tissues, cells, DNA, and the genome

The genepool concept (primary, secondary, tertiary)

Left row:

2 types of wild beans (primary genepool; intra-specific)

2nd row:

domesticated beans (primary genepool)

3rd row:

domesticated cultivars from secondary genepool (inter-specific)

4th row:

domesticated cultivars from tertiary genepool (inter-genera)

Origin of agricultural crops (De Candolle, 1882; Vavilov, 1926)

Vavilov's Centers of Origin:

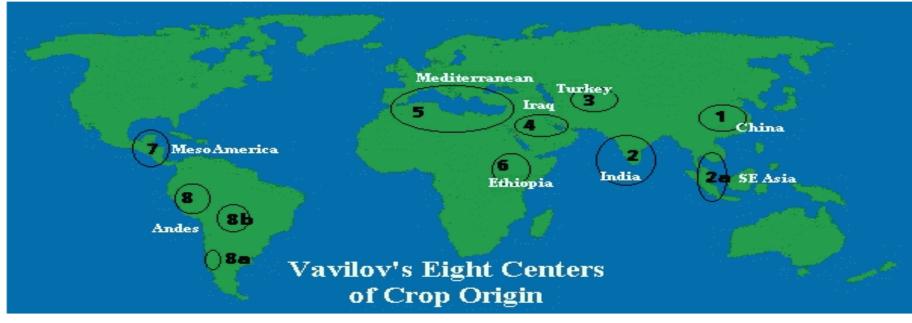
1 China

2 India

2a Indochina

3 Central Asia (N. India, Afghanistan, Turkmenistan)

4 The Near East


5 Mediterranean Sea, coastal and adjacent regions

6 Ethiopia

7 Southern Mexico and Middle America

8 Northeastern South America, Bolivia, Ecudor, Peru

8a Isle of Chile

Field Guide Afghanistan: Flora and Vegetation

4500 flowering plants have been identified in Afghanistan; about 30% are endemic – not found anywhere else. Afghanistan's valleys acted as refuges for plants, allowed them to evolve over million of years into multiple new species. Afghanistan is also richer in fauna than Europe.

There are more than 600 species of legumes; more than 500 Compositae / daisy family; 225 species of Cruciferae / cabbage family; 205 species of Labiatae / mint family; 156 species of Liliaceae.

Edited by S.W. Breckle & M. Daud Rafiqpoor (2010), 868 p., written in Dari and English

Publications	Blogs	Events	Links	Contact

Plants of Afghanistan 1: Centre of Global Biodiversity

posted: 10-06-2012

Among the hundreds of containers bound for Afghanistan which were impounded for over a year at Karachi docks because of a trade dispute were copies of a ground-breaking book on Afghanistan's plants. S W Breckle and M D Rafiqpoor's Field Guide Afghanistan: Flora and Vegetation, (1) is unique, the result of decades of work by several professors - Afghan, German and British – and written in both Dari and English. It is both scholarly and accessible and intended for practical use. The book has finally found its way to Kabul, more than a year after it was published, and more than 4000 free copies are finally being distributed to Afghan schools, universities and research institutes. AAN's Kate Clark has been leafing through the book and hearing from botanists as to why Afghanistan's plant life is quite so exciting - it is, they say, a globally important centre of biodiversity.

Afghanistan is particularly rich in flowering plants. This may be counter-intuitive, given how relatively dry the country is, but there are far more species and sub-species here than, for example, in damper central Europe which is much more favourable for plant growth. 4500 flowering plants have been identified so far in Afghanistan and many more, it is believed, are yet to be found and named.

A particularly high proportion of those plants – 30 per cent - are endemic, ie they are found nowhere else in the world. By way of comparison, the British

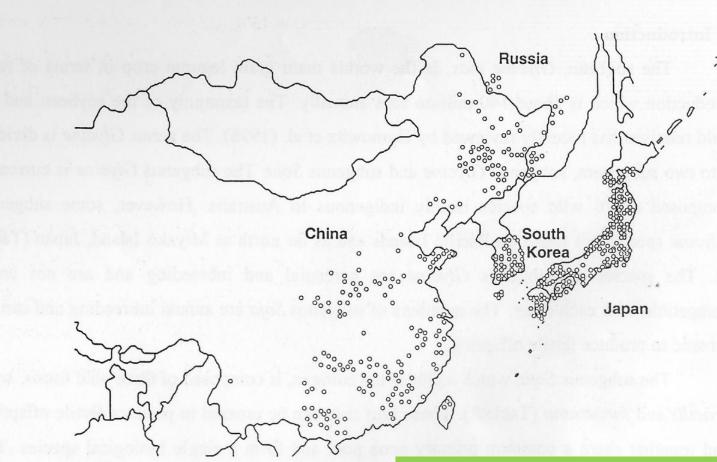
Levels of dependency on PGR for crop production

Table 6.3. Dependence of various regions of the world on outside crops. Dependence is based on percentage of total production (source – Kloppenburg, 1988).

Region	Dependence	Indigenous crops	Major imports	Origin of imports	Period of introduction
Africa	87%	Millet Sorhum Yam	Banana Cassava Maize Sweet potato	South-East Asia South America Mesoamerica South America	Ancient Post-Columbian Post-Columbian Post-Columbian
China	60%	Millets Rice Soybean	Maize Peanut White potato Sweet potato	Mesoamerica South America South America South America	Post-Columbian Post-Columbian Post-Columbian Post-Columbian
Europe	90%	Oats	Barley Maize White potato Wheat	Near East Mesoamerica South America Near East	Ancient Post-Columbian Post-Columbian Ancient
South America	56%	Cassava Sweet potato White potato Yam	Maize Wheat	Mesoamerica Near East	Ancient Post-Columbian
North America	80%	Beans Maize Squash	Barley Wheat White potato Soybean	Near East Near East South America China	Post-Columbian Post-Columbian Post-Columbian Post-Columbian

Case 1 – Grain and vegetable soybean - Glycine max

Centers of origin and genetic diversity


The genus *Glycine* consists of two subgenera: *Glycine* and *Soja*

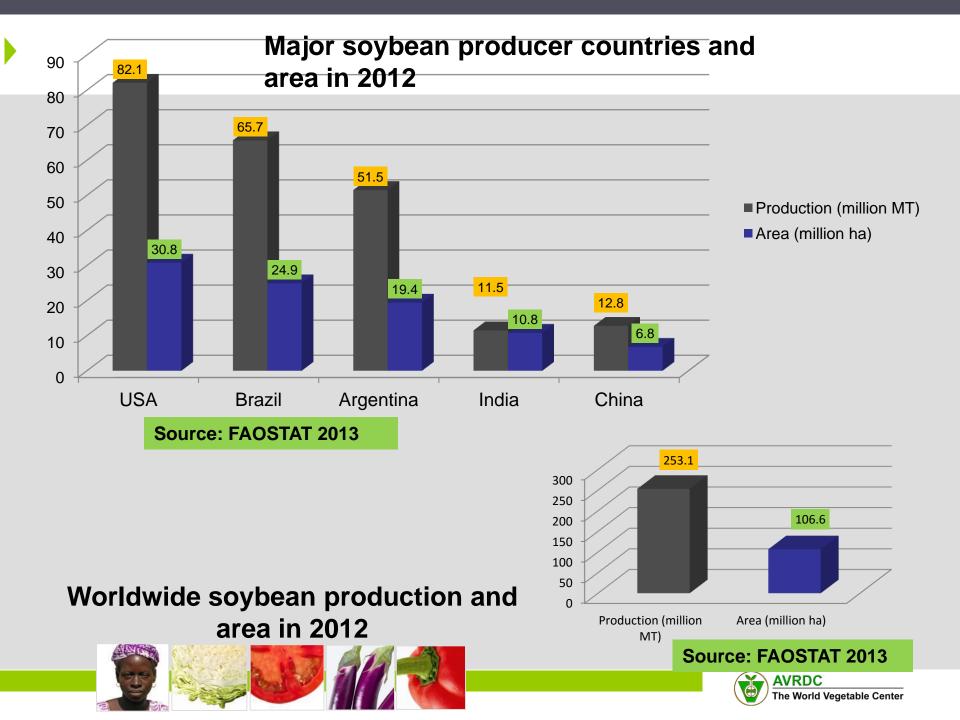
Sub-genus *Soja* (annual; primary genepool of soybean):

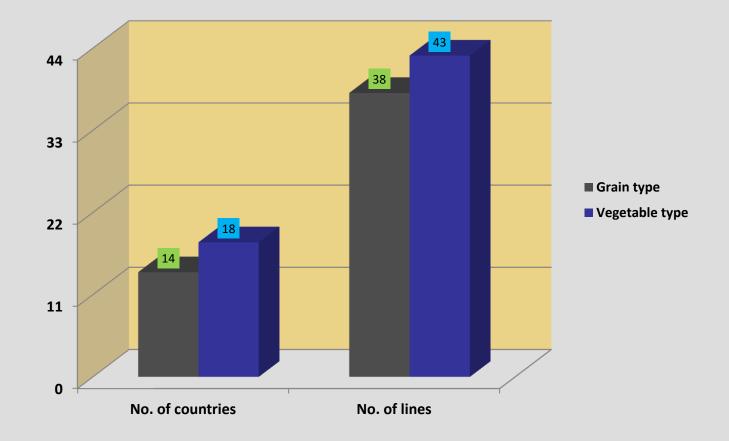
Species	Chromo some number (2n)	No . accessio ns in AVRDC genebank	Distribution area
Glycine max	40	13,996	Cultigen
G. soja	40	1212	Russia, China, Korea, Japan
G. gracilis	40	2	China
G. formosana	40	2	Taiwan
G. IOIIIIOSalla	40		

The World Vegetable Center

Fig. 1 Geographic distribution of known sites of wild soybean (*Glycine soja*)

Source: Shimamoto 2000. Research on wild legumes with an emphasis on soybean germplasm





Sub-genus *Glycine* (perennial; inbreeding; not cross compatible):

Species	2n	*No . Acc.	Distributio n area	Species	2n	*No . Acc.	Distributio n area	
Glycine albicans	40	0	Australia	G. lactovirens	40	0	Australia	
	40	0	Australia	G. latifolia	40	8	Australia	
G. arenaria	40	0	Australia	G. latrobeana	40	2	Australia	
G. argyrea	40	3	Australia	G.	40	5	Australia	
G. cansecens	40	21	Australia <i>microphylla</i>		10	0		
	4.0	0		G. pindanica	40	0	Australia	
G. clandestina	40	8	Australia	G. tabacina	40, 80	,	Australia, West, Central & S. Pacific Islands, Taiwan,	
G. curvata	40	1	Australia					
G. cyrtoloba	40	5	Australia					
G. falcata	40	4	Australia					
G. hirticaulis	40,	0	Australia				Japan	
	80			G. tomentella 38, 15		Australia, P.N. Guinea,		
G. javanica	22, 44		of accessions maintained in RDC genebank		40, 78, 80		Indonesia, Philippines, Taiwan	

AVRDC-developed grain and vegetable soybean varieties released worldwide since 1978

Case 2 – tomato – *Solanum lycopersicum*

Centers of origin and genetic diversity

Cultivated tomato is derived from *S. lycopersicum* var. *cerasiforme*; domesticated in Mexico. Wild species are distributed throughout Central and South America.

Due to domestication and transmigration, only 5% of the genetic diversity of wild tomatoes is retained in cultivated tomato!

Solanum sect. *Lycopersicon*: 12 wild species are spread throughout South America:

Species	Distribution	Elevation	AVRDC acc
S. arcanum	Northern Peru	100-2500 m	4
S. cheesmaniae	Galápagos Islands	0-1300 m	17
S. chilense	Southern Peru to northern Chile	0-3000 m	47
S. chmielewskii	South-central Peru to northern Bolivia	1500-3000 m	11
S. corneliomulleri	Southern Peru	1000-3000 m	11
S. galapagense	Galápagos Islands	sea shore	31
S. habrochaites	Southwest Ecuador to south-central Peru	500-3300 m	151
S. huaylasense	Peru	1700-3000 m	0
S. lycopersicum*	Ecuador and Peru; now widely spread	Variable	6142
<i>S. lycopersicum</i> var. <i>cerasiforme</i> *	Probably native from Andean region	Variable *cultiva	125
S. neorickii	Southern Ecuador to south-central Peru	1500-3000 m	12
S. pennellii	Coastal Peru	0-2000 m	65
S. peruvianum	Northern Peru to northern Chile	0-600 m	133
S. pimpinellifolium	Coastal Peru and Ecuador	Under 1000 m	330

Ex situ conservation of tomato germplasm worldwide

	Genebank	Accessions		
Instit. code	Acronym	Country	No.	Percent (%)
TWN001	AVRDC	Taiwan	8259	10
USA003	NE9	USA	6343	8
USA094	DHSNYST	USA	4850	6
PHL130	IPB-UPLB	Philippines	4751	6
USA117	Campbell Inst., Agric. Res.	USA	4572	6
DEU146	IPK	Germany	4063	5
USA176	GSLY	USA	3395	4
RUS001	VIR	Russia	2540	3
JPN003	NIAS	Japan	2428	3
CAN004	PGRC	Canada	2137	3
	Others (148)	Others	39,055	47.4
	Total	World	82,393	100

Tomato collection maintained by AVRDC

Category	Accs.
Wild species	812
Unidentified accessions	585
S. lycopersicum	6,142
S. lycopersicum var. cerasiforme	125
Sub-total	6,854
Genetic stocks (IL, RIL, hybrids)	595
Total	8,261

Major contributing countries to cultivated tomato collection:

- US (1197 accs.)
- China (453)
- El Salvador (411)
- Taiwan (394)
- Peru (305)
- Guatemala (231)
- Philippines (217)

AVRDC's collection of wild Solanum species

Taxons	No. of accessions	S. arcanum	S. cheesmaniae	S. chilense
S. arcanum	4	XA		
S. cheesmaniae	17	alter.		- Eliter
S. chilense	47		S. chmielewskii	S. corneliomulleri
S. chmielewskii	11		20	
S. corneliomulleri	11			- Cr
S. galapagense	31		S. galapagense	S. habrochaites
S. habrochaites	151			Cor por
S. neorickii	12		- AT	and the
S. pennellii	65		- Andrew	10m
S. peruvianum	133		S. neorickii	* 10
S. pimpinellifolium	330		78-57	S. pennellii
Total	812		Ó	0 0
			S. peruvianum	S. pimpinellifolium

Summary of genetic stocks of *Solanum* introgression lines (IL), recombinant inbred lines (RIL) and hybrids

Crosses	# Access.	S. lycopersicum x S. child
S. lycopersicum x S. chilense (IL)	100	
S. lycopersicum x S. habrochaites (hybrids)	2	
S. Lycopersicum x S. lycopersicum var. cerasiforme (hybrids)	17	S. lycopersicum x S. penn TL02483
S. Lycopersicum x S. pennellii (IL)	79	100
S. lycopersicum x S. peruvianum (hybrids)	5	- Ser 🖉 🖉
S. lycopersicum x S. pimpinellifolium (hybrids)	123	
S. lycopersicum x S. pimpinellifolium (RIL)	75	S. lycopersicum x S. pimpinel
S. lycopersicum (Hawaii 7996) x S. pimpinellifolium		
(WVa700) (RIL) (F8)	188	
S. habrochaites x S. lycopersicum (hybrids)	2	
S. pimpinellifolium x S. lycopersicum var. cerasiforme (hybr.)	4	S. lycopersicum x S. pimpine
Total	595	

Why do we need intra- and interspecific genetic diversity?

... to create better vegetables

Building on crop diversity to deliver better vegetable cultivars and produce for farmers and consumers:

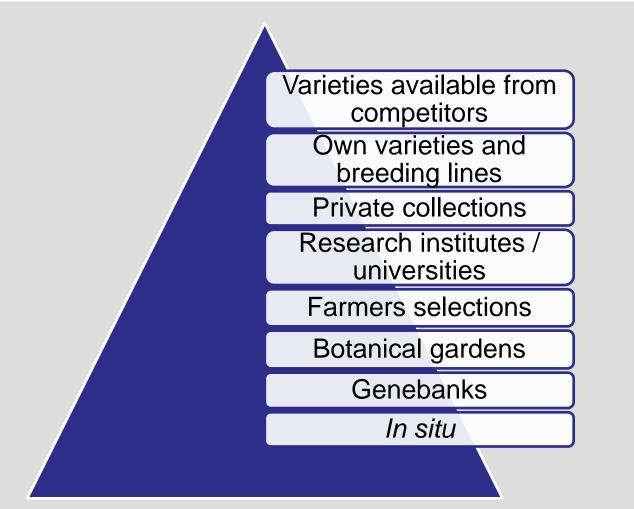
- Higher yields through multiple resistance to pests and diseases;
- More stable yields under biotic and abiotic stresses;
- Improved high-value features (e.g. size, color, taste);
- Better nutritional quality (e.g. vitamin A and iron)

... to improve tolerance to environmental stress

Wild tomato - source of drought tolerance

Plant breeding and genetic resources

Access to and use of plant genetic resources is vitally important for effective plant variety development and improvement;


Without access to and without maintenance of PGR:

- no availability of PGR
- no plant breeding

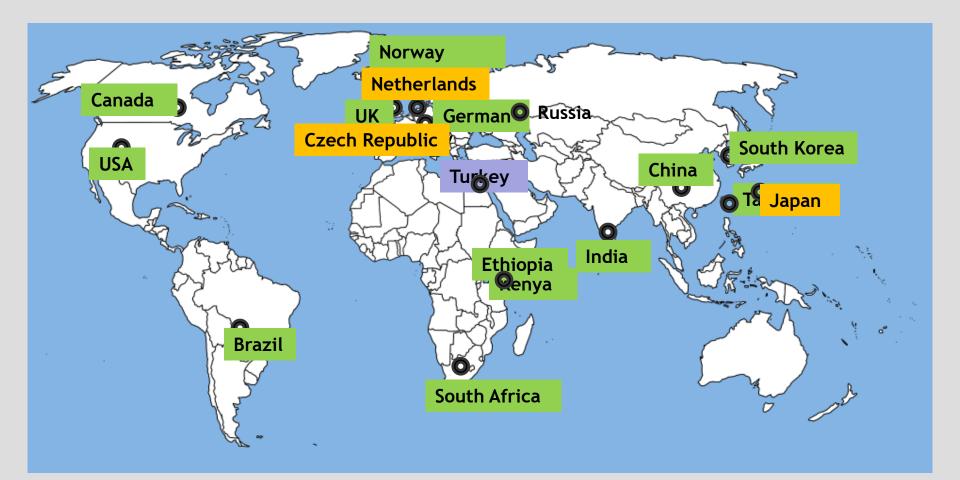
Availability of genetic resources for breeding

Conservation approaches and methods

In situ

- I nature reserves
- managed areas
- Introduction to reserves
- **on-farm management** (farmer exchanges) (new introductions)
- on-farm conservation (community genebanks)
- field genebanks
 - seed genebanks (short-term; long-term)
 - in vitro genebanks (slow growth cryopreservation
 - pollen banks
 - **DNA** libraries
 - Ex situ

he World Vegetable Center


Diversity in vegetables for almost any conceivable purpose found in genebanks:

- Adapting to climate change
 - E.g. early-morning flowering
- Improving tolerance to biotic stresses
 - New diseases, pests, weeds
- Improving tolerance to abiotic stresses
 - Polluted, degraded or saline soils
 - Cold, heat, drought, flood
- Improving food quality
 - Taste / perceived quality
 - Nutritional value / health benefits
- Improving yield
- Future unknowns …

Ex-situ conservation of (vegetable) germplasm by public genebanks around the world

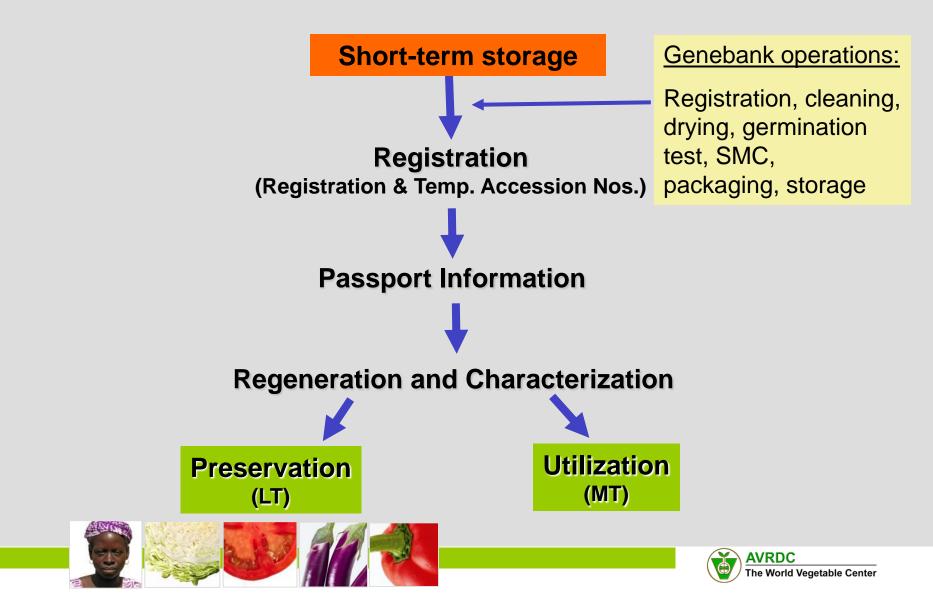
Major (vegetable) genebanks

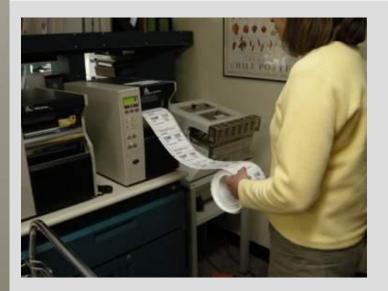
Number of accessions, genera, and specie	es Ethiopia, IBC: 67,554 / 151 / 324
Taiwan, AVRDC: 1995; 43,205 / 63 /209;	Turkey, AARI: 54,523 / 545/ 2692
2015: 61,435 / 172 / 439	Kenya, KARI-NGBK: 48,777 / 855 / 2350
USA, NPGS: 508,994 / 2128 / 11,815	Hungary, ABI: 45,321 / 294 / 915
China, ICGR-CAAS: 391,919	Nordic countries, NGB: 28,007 / 129/ 319
India, NBPGR: 366,333 / 723 / 1495	Netherlands, CGN: 24,076 / 36 / 311
Russia, VIR: 322,238 / 256 / 2025	Ecuador, INIAP: 17,830/272/662
Korea, RDA: 272,181 / 15,937 hort. crops	Czech Republic, RICP: 15,421 / 30 / 175
Japan, NIAS: 243,463 / 341 / 1409	
Germany, IPK: 148,128 / 801/ 3049	South Africa, Veg. & Orn. Plant Inst.
Brazil, CENARGEN: 107,246 / 212 / 670	UK, Warwick Crop Center, Veg. GB
Canada, PGRC: 106,280 / 257 / 1166	Svalbard Global Seed Vault

Source: 2nd SoW PGRFA; AVRDC-GRSU


We now need: Not a Green Revolution, but a **Revolution with Greens!**

The world's largest public sector collection of vegetable germplasm: AVRDC Genetic Resources and Seed Unit Genebank

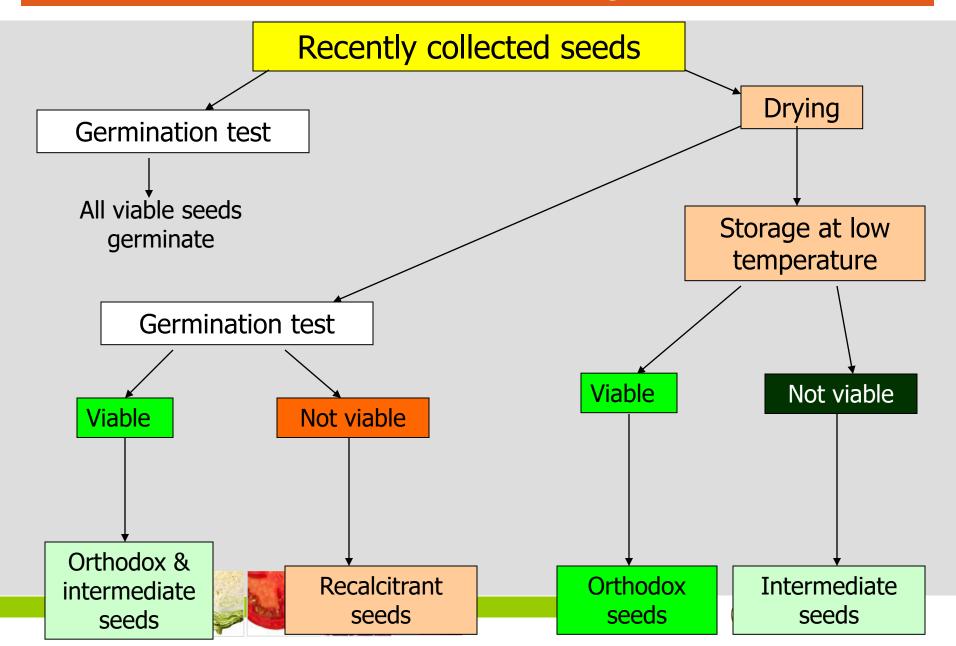

Steps in germplasm and genebank management


Collection / acquisition of germplasm

(Done in collaboration with NARES, other genebanks, donations)

Use of barcode labels in different stages

Behaviour of vegetable seeds in storage


Majority of vegetable crops are produced from orthodox seeds:

- Preservation: seeds can be dried to a low seed moisture content (4-7%) and stored in a cool and dry place for many years (decades)
- Some vegetatively propagated crops (shallot, garlic, leafy sweet potato) need to be preserved in field genebanks

Determination of Seed Storage Behaviour

Seed Classification

	Orthodox seeds	Intermediate seeds	Recalcitrant seeds from temperate zones	Recalcitrant seeds from tropical climates
Seed moisture content for storage (%)	Very low (2-5%)	Low (7-10%) (equilibrium with HR of 30- 50%)	High >30-50% at maturity (12-30% after drying)	High >30-50% at maturity (12-30% after drying)
Storage temperature	Very low -18 °C	Medium to high ~ 20 °C	Low > 0 °C	High ∼ 25 °C

Viability monitoring during cold storage

REGENERATION (WEDNESDAY AFTERNOON, 5 AUGUST)

Predicted longevity of sel. species and monitoring frequency

Genus	Species	Predicted Iongevity (years)	Monitoring frequency (years)*
Lactuca	sativa	74.5	18.6
Allium	сера	111	27.8
Glycine	max	112.5	28.1
Brassica	napus	131.5	32.9
Cucurbita	реро	245	61.3
Cucumis	melo	266	66.5
Phaseolus	vulgaris	373	93.3
Pisum	sativum	446.5	111.6
Vigna	unguiculata	304	76.0
Vigna	radiata	1252	313

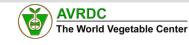
*Frequency: 4 intervals based on longevity

Source: 2nd Draft FAO Genebank Standards

Regeneration/characterization at AVRDC

Characterization

- Traits that are
 - Highly heritable and show low GxE interactions
 - ➔ assessment possible in one location, one year, with no replication, controls or treatment contrasts
 - Easy to record
 - → Without expensive specialist equipment or expertise
- Why should genebanks characterize?
 - Without data about an accession, no rational basis to select it for use
 - Need data on every accession in the collection
 - Feasible to characterize entire collection



Descriptor lists

Descriptors for Capsicum CONTENTS (Capsicum spp.) Produced in association with ACKNOWLEDGEMENTS GR

iii

PREFAC	Ε	iv
DEFINIT	IONS AND USE OF THE DESCRIPTORS	1
PASSPO	RT	3
1.	Accession descriptors	3
2.	Collecting descriptors	5
MANAG	EMENT	9
3.	Seed management descriptors	9
4.	Multiplication/Regeneration descriptors	9
ENVIRO	NMENT AND SITE	12
5.	Characterization and/or evaluation site descriptors	12
6.	Collecting and/or characterization/evaluation site	14
	environment descriptors	14
	CTERIZATION	23
7.	Plant descriptors	23
EVALUA	TION	38
8.	Plant descriptors	38
9.	Abiotic stress susceptibility	39
10.	Biotic stress susceptibility	39
11.	Biochemical markers	43
12.	Molecular markers	43
13.	Cytological characters	44
14.	Identified genes	44
REFEREN	NCES	45
CONTRI	BUTORS	46
CKNO	WLEDGEMENTS	49
ACT ACT		47

Morphological characterization

Leaf pubescence Azuki bean

Plant height Azuki bean, at flowering

Seed color Yard-long bean

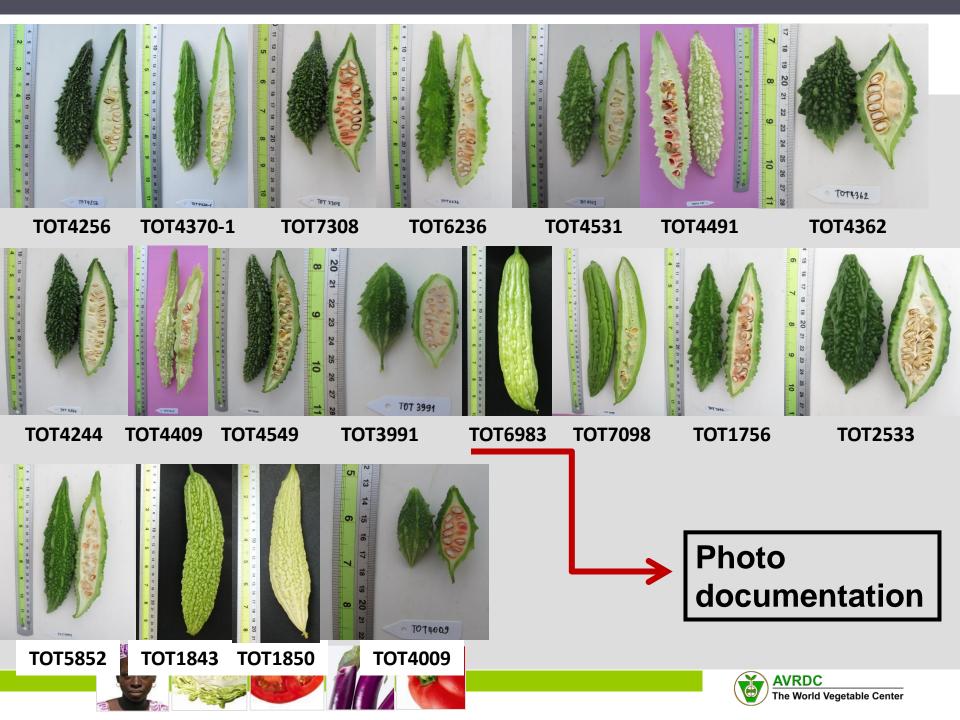
Characterization of new Sun hemp collection

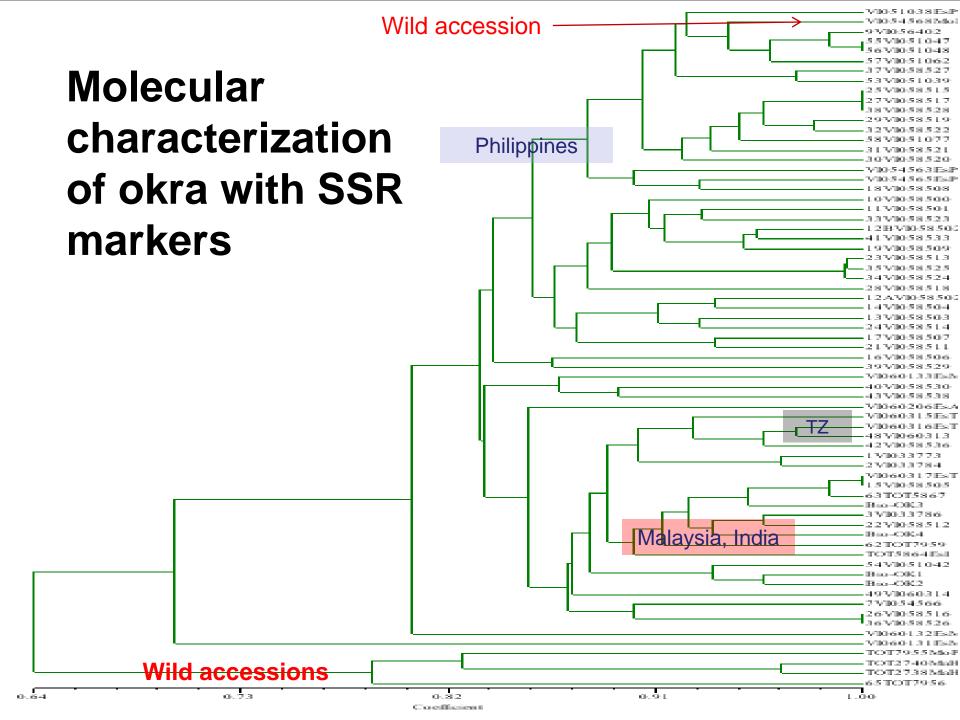
sunhemp descriptors.pdf

Crotalaria sp. acc. TZ 85 Source: NPGRC, Tanzania

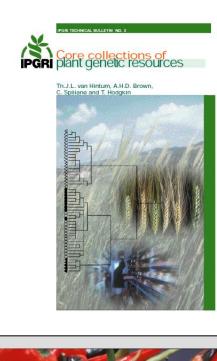
Characterization of indigenous vegetables using morphological traits; Amaranthus, Brassica and Corchorus (top left to right) and,

Solanum (bottom).


Arrow indicates

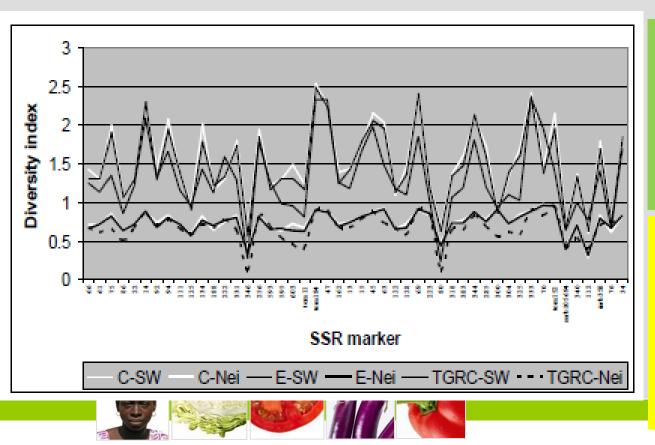

seedless fruits

Solanum macrocarpon CR005 (A) EX-DAR



Core Collections

A <u>core collection</u> is a limited set of accessions representing, with a minimum of repetitiveness, the genetic diversity of a crop species and its wild relatives (Frankel 1984). A core of about 10% of the total collection is likely to contain at least 70% of the variation.


Mini core collections (ICRISAT) comprise approx. 10% of the core or 1% of the entire collection; meant to enhance utilization of germplasm further.

Solanum pimpinellifolium core collection

75 core accessions identified representing 22.7% of AVRDC's entire collection. A well balanced core with a good representation of the different populations (31 from Pop I, 22 from Pop II, and 22 from the Admixture group) and geographic origins (40 from Peru, 17 from Ecuador, 14 from Mexico and 4 from other countries).

Distribution of Shannon Weaver & Nei diversity indices among 48 SSR markers in the entire collection (E-SW; E-Nei) & the core collection (C-SW; C-Nei)

Rao et al. (2012) Using SSR markers to map genetic diversity and population structure of *Solanum pimpinellifolium* for development of a core collection. Plant Genetic Resources: Characterization & Utilization (2012) 10(1): 38-48.

Mining the genetic treasure of the AVRDC genebank development and release of Tengeru97 and Tanya

- Developed by AVRDC breeders and released in Tanzania in 1997; Tanya was the first locally adapted processing variety suitable for yearround production.
- In 6 years from 1997 to 2003 -, the tomato production area grew from 16,600 to 19,000 ha

- In 2003, the most important tomato varieties grown were Tanya (45%) and Tengeru97 (24%), followed by Marglobe (11%) and Money Maker (7%)
- 69% of the farmers adopted the new varieties in 2003.
- With average variable cost of production being 17% lower, and a yield increase of 36%, the overall net income was 39% higher with the new varieties.

African eggplant DB3 and AB2

- Selected from accessions of Solanum aethiopicum, DB3 and AB2 are sweet tasting; out-yielding most traditional bitter-tasting varieties
- Can be harvested every week for 7 months
- Premium priced, giving a potential income of approx. US\$ 2,500 per ha annually

• Local seed companies have started scaling up seed production

Amaranthus Green Gina and White Elma

 Selected from accessions of Amaranthus cruentus, A. hybridis and A. dubius

- Fast growing with soft, sweet leaves, much shorter cooking time - maximizing nutritional values and saving fuel wood
- Start appearing in supermarkets and on the menus of small local hotels in Nairobi and other cities
- Demand is so high that national seed companies are taking interest in producing and selling the seeds

There are further options for the use of conserved genetic materials...

- 1. Nutritional content of vegetables can be enhanced:
 - higher nutrient content
 - improved bioavailability of the nutrients

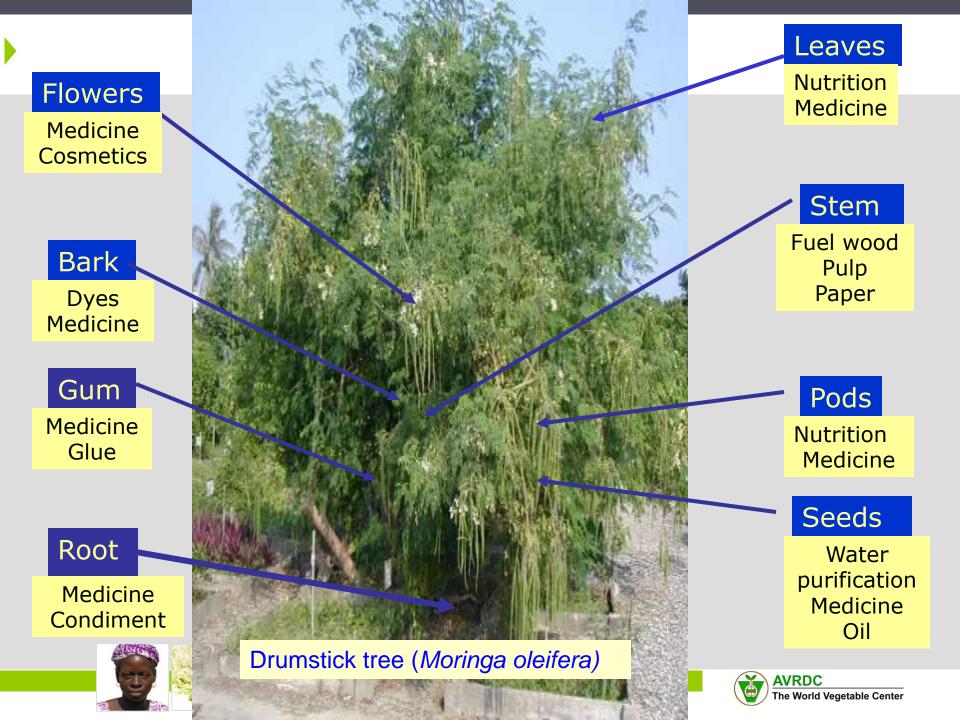
Orange-colored Golden tomato lines CLN2366 A and -B

- contain 10 to 12-times more ß-carotene
- one golden tomato can provide a person's full day vitamin-A requirement

Bitter gourd: High value

Beneficial medicinal characteristics can be exploited

Bitter gourd (Momordica charantia)



• Bitterness is attributed to non-toxic alkaloid momordicin, a potential compound to treat type 2 diabetes and tumors.

• In traditional medicine used to treat diabetes, tumors (leukemia, skin); said to be effective cure for scabies, itching, psoriasis, ringworm and fungal infections; used to treat arthritis, rheumatism, asthma, and alcohol dependency.

Market Potential

Current Use of Moringa

Moringa oil as base for

shampoos

- Food supplement –
- fortification
- Specialty creams (cosmetics)
- Specialty "Energy" drinks

Documentation - Linking Germplasm Conservation with Utilization Germplasm Conservation

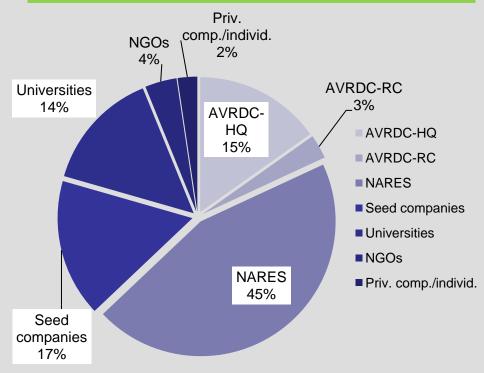
Evaluation

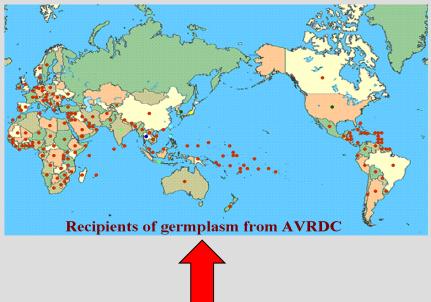
Characterization Morphological Seed Proteins, RAPD, SSR

virus resistance (CMV, CVMV, PMMV, PVY, ToMV, TMV, gemini viruses, WTG,ZYMV, CGMMV) DM,PM, BW (Pss186, Pss4, Pss190) cotton aphid cotton leaf hopper bruchids

Germplasm Utilization

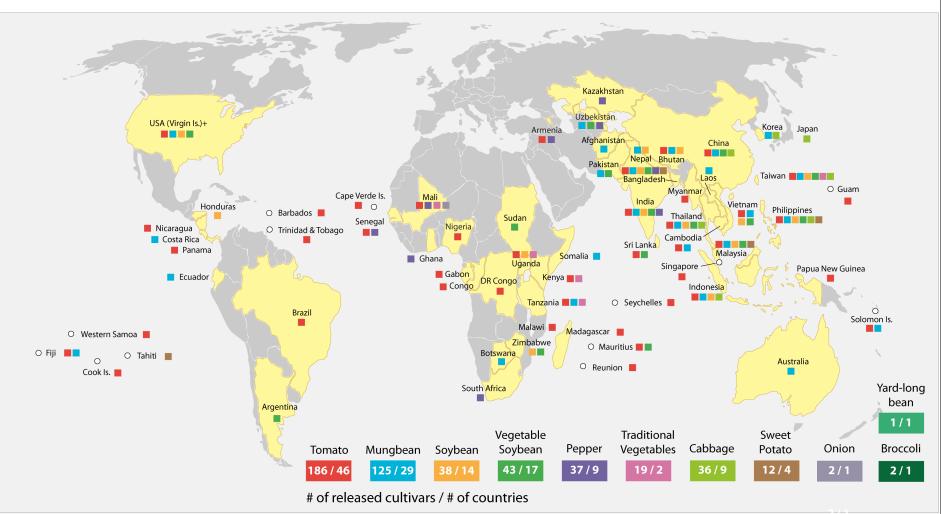
Data made available in AVGRIS




Evaluation protein sugar total soluble solids dry matter fiber color value capsaicin Vitamin A/ β carotene Vitamin C/ascorbic acid alkalinity/pH acidity/% citric acid lipid total phenol total anti-oxidant activity carotenoids

Seed distribution in 2014

The contribution of AVRDC's genebank to the use of vegetable diversity worldwide in 2014 (6727 unique samples)



6000 to 8000 genebank accessions and breeding lines dispatched annually worldwide

AVRDC-derived varieties released since 1978

501 improved vegetable cultivars benefit farmers around the world

September 2013

http://www.avrdc.org - Under "Seed", scroll down and select "AVRDC genebank" to have access to \rightarrow AVGRIS

AVGRIS **AVRDC Vegetable Genetic Resources** Information System

Search

Data Category

Contact Us

Terms of Use

About AVGRIS

The system aims to:

- Assist the GRSU staff in day-to-day activities.
- Facilitate recording, storage and maintenance of germplasm data.
- Provide direct access to information pertaining to accessions in the genebank, and
- Allows requests for the desired seeds

WELCOME TO AVGRIS

The AVRDC Vegetable Genetic Resources Information System (AVGRIS) is an information system that manages the data of all vegetable germplasm conserved at GRSU, AVRDC. It is designed to manage the GRSU operations more efficiently. It links all operations associated with germplasm conservation and management from registration, characterization, evaluation, seed inventory and seed distribution to end-users.

This web version of AVGRIS has been developed by GRSU staff. It provides the user direct access to germplasm data through the internet.

Use of the system is FREE but please first read the TERMS OF USE

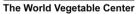
The data that are accessible are:

- Passport
- Characterization, and
- Evaluation

http://203.64.245.173/

Search Germplasm – Passport Data

	GRIS able Genetic Re system	sources			
Home	Search	Data Category	Contact Us	Terms of Use	About AVGRIS
Search G	ermplasm				
<u>Please en</u> t	ter search criteria	below			
Cr	op Accession No.:	(e.g. A00	001, B00001,)		
	Temporary No.:	(e.g. TAC	0001, TB00001,)		
Ge	nus and Species :	CAPSICUM ANNUUM			~
Pedigree	e / Cultivar Name:				
	Subtaxa :				
	Country :	*Any Country*	*		
	Text Search :				
		Search	Reset		
opyright 👁 2004 – AVI	RDC Vegetable Genetic F	Resources Information System		The	AVRDC



Search Germplasm – Passport Data

AV	RDC Veget	table Gene	S tic Resourc	es						
H	ome	Search	1	Data Categoi	У	Contact	Us	Terms of Use	Abou	AVGRIS
SE	ARCH GE	RMPLAS		s:						
	Res	sults 1 - 10	of about 53	68 records.						New Search
	Crop Accession Number	Temporary Number	Vegetable Introduction Number	Family	Genus	Species	Subtaxa	Pedigree / Cultivar Name	Country of Collection	
1	C00269	TC00001	VI011971	SOLANACEAE	CAPSICUM	ANNUUM		SZENTESI KOSSZARVU	Hungary	View Details
2	C00270	TC00002	VI011972	SOLANACEAE	CAPSICUM	ANNUUM		KY 76-G	Unknown	View Details
3	C00272	TC00004	VI011974	SOLANACEAE	CAPSICUM	ANNUUM		395 7431	Unknown	View Details
4	C00274	TC00005	VI011975	SOLANACEAE	CAPSICUM	ANNUUM		PEPPERONCINI	Unknown	View Details
5	C00293	TC00008	VI011978	SOLANACEAE	CAPSICUM	ANNUUM			Hungary	View Details
6	C00308	TC00010	VI011980	SOLANACEAE	CAPSICUM	ANNUUM		BUDAIEDES	Unknown	View Details
7	C00324	TC00012	VI011982	SOLANACEAE	CAPSICUM	ANNUUM		GYPSY (F1)	Hungary	View Details
8	C00342	TC00013	VI011983	SOLANACEAE	CAPSICUM	ANNUUM		CANAPE (F1)	Hungary	View Details
9	C00344	TC00015	VI011985	SOLANACEAE	CAPSICUM	ANNUUM		QIEI MEN	China	View Details
10	C00352	TC00016	VI011986	SOLANACEAE	CAPSICUM	ANNUUM		PM 217	Mexico	View Details

Search Germplasm – Characterization Data

C d Vegetable Center

Search Germplasm – Characterization Data

AVF	RDC Vegetable	le Genetic I	Resources		X					
Но	me	Search	Da	ita Categ	ory	Contact	Us	Terms of	Use Ab	out AVGRIS
- SE/	ARCH RESU	LTS FOR	CAPSICU	N						
	Result	s 1 - 10 of a	bout 4578	records.						New Search
	Vegetable Introduction Number	Crop Accession Number	Temporary Number	Species	Subtaxa	Pedigree / Cultivar Name	Fruit pungency	Country	Characterized Year and Season	
1	VI011971	C00269	TC00001	ANNUUM		SZENTESI KOSSZARVU		Hungary	1986AU	View Details
2	VI011971	C00269	TC00001	ANNUUM		SZENTESI KOSSZARVU		Hungary	19895P	View Details
з	VI011972	C00270	TC00002	ANNUUM		KY 76-G		Unknown	1986AU	View Details
4	VI011972	C00270	TC00002	ANNUUM		KY 76-G		Unknown	1988SP	View Details
5	VI011972	C00270	TC00002	ANNUUM		KY 76-G		Unknown	1989SP	View Details
6	VI011974	C00272	TC00004	ANNUUM		395 7431		Unknown	1989SP	View Details
7	VI011975	C00274	TC00005	ANNUUM		PEPPERONCINI	Sweet	Unknown	1991SP	View Details
8	VI011978	C00293	TC00008	ANNUUM				Hungary	1989SP	View Details
9	VI011985	C00344	TC00015	ANNUUM		QIEI MEN		China	1986AU	View Details
10	VI011985	C00344	TC00015	ANNUUM		QIEI MEN		China	19885P	View Details

AVRDC Vegetable Genetic Resources Information System

Home	Search	Data Category	Contact Us	Terms of Use
Char	acterization Dat	ta - Capsicum		
			Crop accession number	C00104
			Duplicate number	2
	JULY	19 '89	Temporary number	
	. 0 00		Variant	
		IN PAL	Species	ANNUUM
1		1 : 1980	Subtaxa	
	285	1000	Pedigree / Cultivar Name	MC 4
1000			March and a second s	

	Pedigree / Cultivar Name	MC 4
PRE INFIB	Country	Malaysia
C00104 07/19/1989	Characterized year and season	1986SP
GRSU/AVRDC	Remarks	
DESCRIPTOR NAME	VALUE	
		SeedlingData
Hypocotyl color		
Hypocotyl color intensity		
Cotyledonous leaf length (mm)		
Cotyledonous leaf width (mm)		
Cotyledonous leaf shape		

Cotyledonous leaf color

About AVGRIS

Back

Safety duplication of AVRDC germplasm

Duplication Site	Crops	# of acc.
National Plant Genetic Resources Center (NPGRC), Taichung, Taiwan (1993 to present)	Mungbean, soybean, pepper, tomato, etc.	26,954
National Plant Genetic Resources Laboratory, Philippines (08/1982)	Mungbean, tomato	9,407
Nat. Vegetable Res. Station Wellesbourne, UK (1982-1986)	Brassica	372
Nat. Inst. Agrobiol. Sciences (NIAS), Japan (1981-1985)	Brassica	357
NIAS, Japan (1984-1986)	Southeast Asian soybeans	2,389
Nat. Germplasm Resources Lab., Beltsville, USA (1984-1986)	Southeast Asian soybeans	2,389
Svalbard Global Seed Vault, Norway (02/2008 + 09/2009 + 11/2010 + 10/2012)	All major AVRDC collections included	12,769
National Agrobiodiversity Center, RDA, Korea (05/2009 + 12/2010 + 11/2012)	All major AVRDC collections included	12,819 (21.5%)

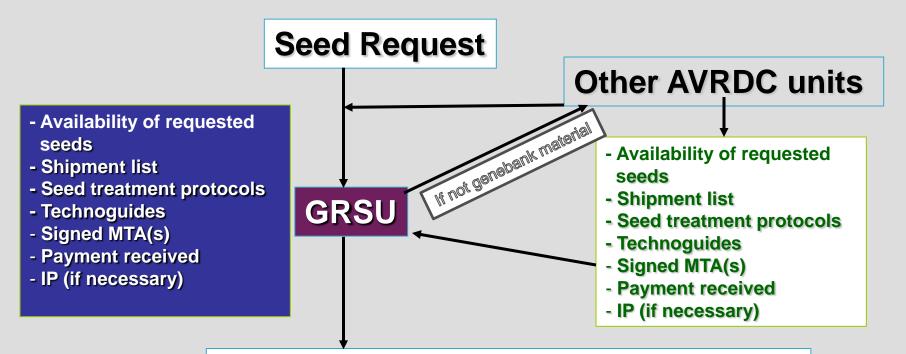
Svalbard Global Seed Vault, Norway

Destination of some of the Center's germplasm in 02/2008 + 09/2009 + 11/2010 + 10/2012

12,769 accessions

"Noah's Ark" on Svalbard

Shipment to RDA genebank in Suwon, Korea (15/05/09)



Officer of BAPHIQ inspecting seed shipment

Processing of seed requests

Taiwan Bureau of Animal and Plant Health Inspection and Quarantine

Destination

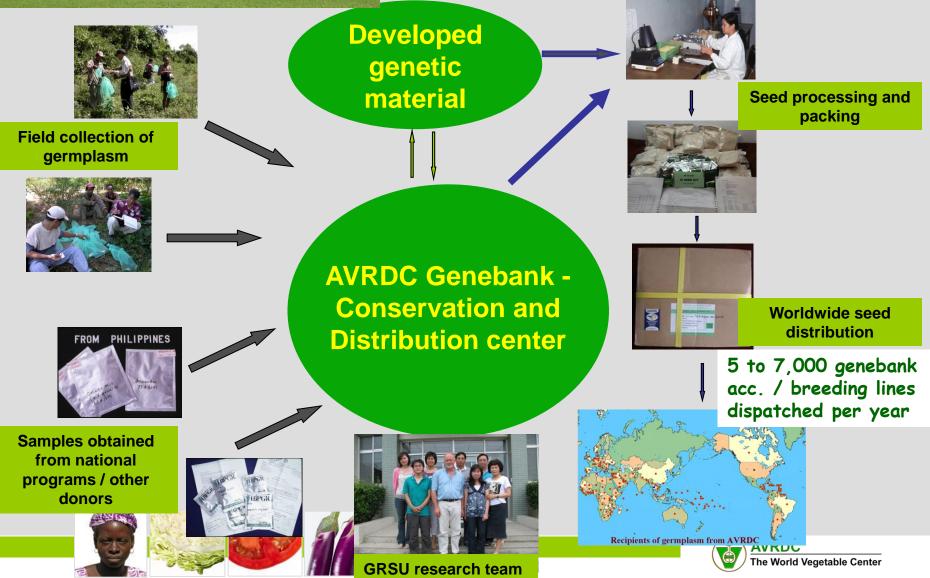
AVRDC

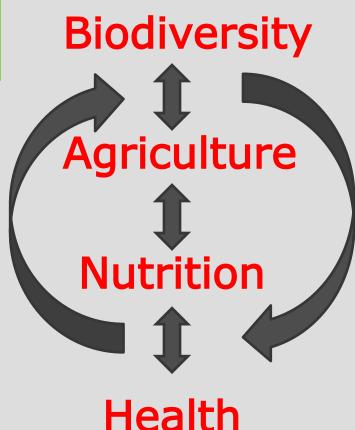
he World Vegetable Center

Phytosanitary Certificate

Pest Risk Analysis

PEST RISK ANALYSIS ON IMPORTING MUSTARD SEEDS (*Brassica Juncea*) FROM ITALY


18-page document


AVRDC Genebank The source for tomorrow's vegetables

Increased diversity in vegetable production & consumption has multiple benefits

Nutrition & Health benefits

- Improved strength & endurance
- Improved learning capacity of children
- Enhanced maternal health
- Higher productivity

Agricultural & social benefits

- More resilient agric. systems
- More jobs
- Better income
- Gender equity
- Food security
- Dietary diversity
- Improved livelihoods

...

The GRSU Team