Principles of vegetable breeding & seed production

Narinder Dhillon

Supannika Sanguansil

Vegetable?

An edible part (as root, tuber, stem, leaves inflorescence, fruit or seed) that is used as human food and usually eaten cooked or raw during the <u>principle part of a meal</u> rather than as a dessert – contrasted with fruit

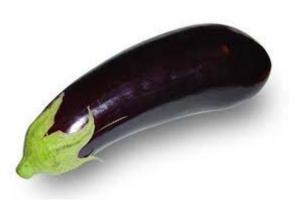
Watermelon is also a vegetable?

It is planted from seeds/seedlings, harvested, and then cleared from the field like other vegetables. Since watermelon is grown as a vegetable crop using vegetable production systems, watermelon is considered a vegetable

Plant breeding vs Vegetable breeding

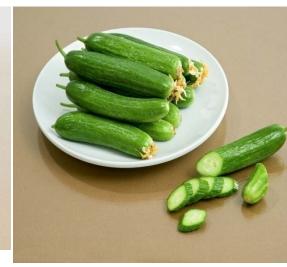
Plant breeding is the art, science and business of improving plants for human benefit

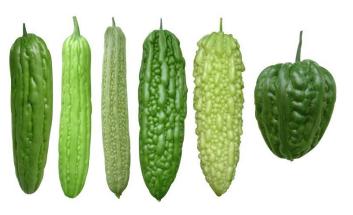
- How vegetable breeding differ from crop breeding?
 - Wide choice of different species
 - Range of traits
 - Local preferences
 - Increasing breeding capacity with private-sector seed companies


Consumer preference



Cucumber market types





Chinese type

Taiwan type

Okinawa type

Bitter gourd market types

Vietnam type

Philippines type

South Asian type

Pumpkin market types

Pumpkins in S. Korea

When is a breeding program needed?

A breeding program is needed if

current varieties are not producing

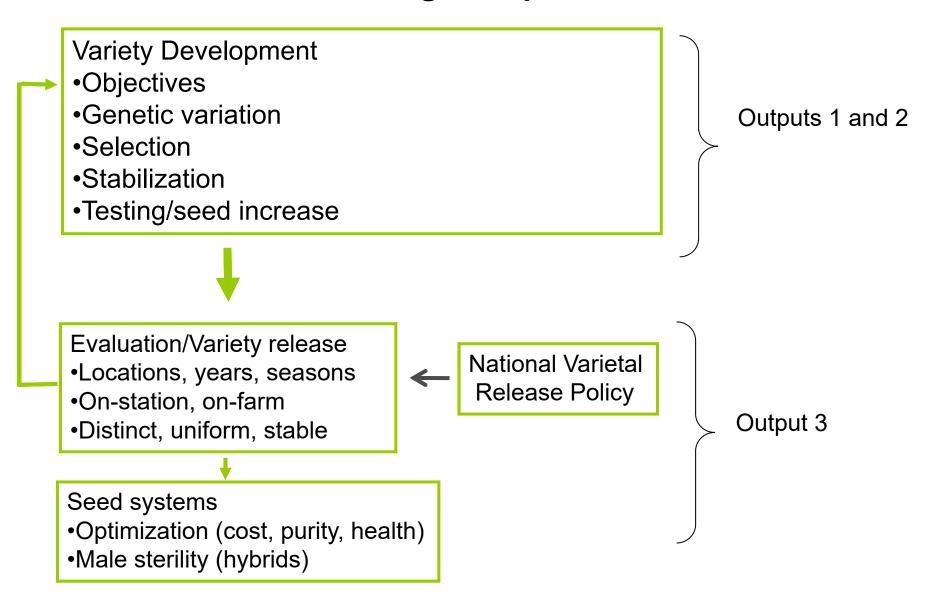
up to the capacity of the

environment

Types of cultivars

Pure line

■ F₁ hybrids


Open pollinated

Clones

Relation of Breeding Outputs

Methods of vegetable breeding

Introduction

Line breeding

Population breeding

Hybrid breeding

Clone breeding

Note: Mode of reproduction is the deciding factor to develop suitable breeding and selection methods.

Phenotype vs. Genotype

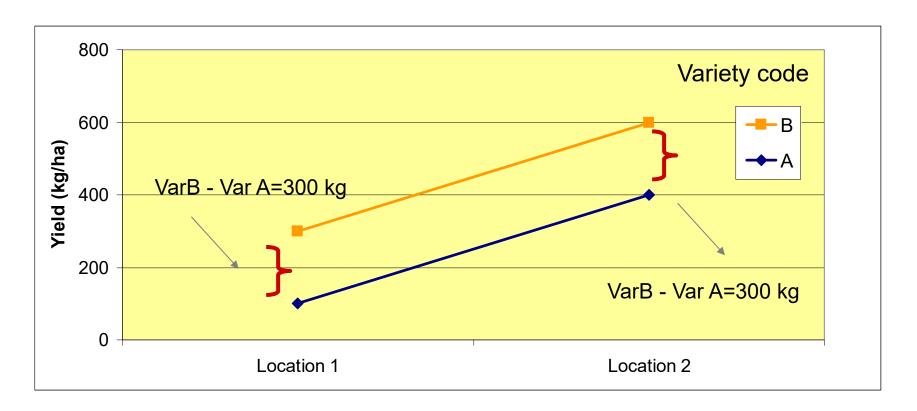
$$P = G + E + (GxE)$$

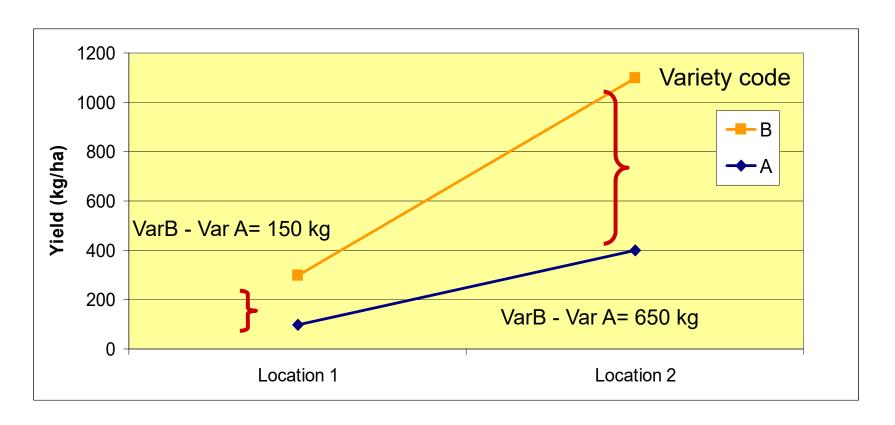
P is called the phenotypic value, i.e., the measurement associated with a particular individual

G is genotypic value, the effect of the genotype (averaged across all environments)

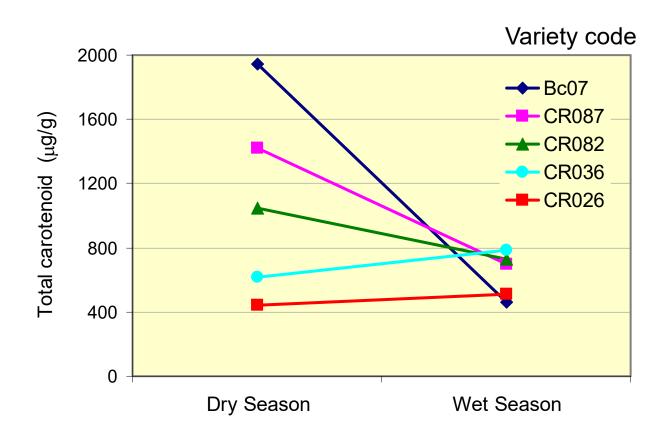
E is the effect of the environment (averaged across all genotypes)

GxE?

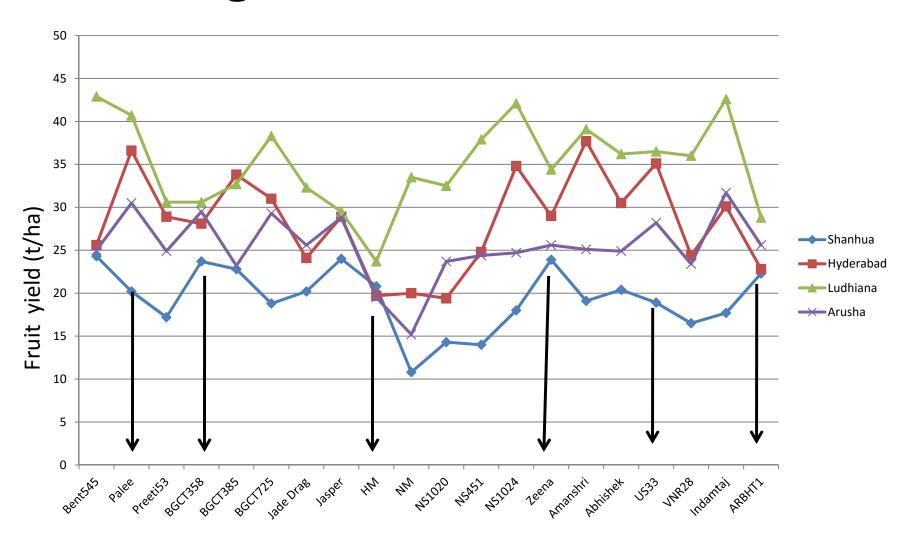

When different genotypes exhibit differential responses to different sets of environmental conditions, a genotype x environment (G x E) interaction is said to occur


No Genotype-Environment Interaction

- Variety ranking is same between locations 1 and 2
- Size of the difference between varieties is the same at both locations


GxE Interaction Present: Case 1

- Variety ranking is same between locations 1 and 2
- Yield difference between varieties varies greatly between locations


GXE Interaction Case 2:

Total Carotenoid Contents of choysum (*Brassica rapa* cvg. parachinensis) in dry and wet seasons

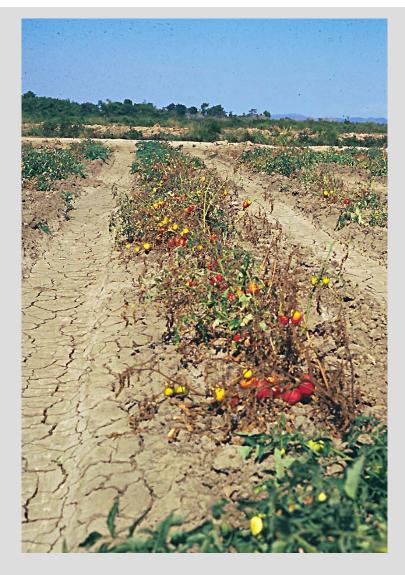
 Variety rank changes between seasons
 Changes in the magnitude of variety differences between seasons

Bitter gourd: Multi-location trial

ANOVA

Variation	Degree of freedom	Mean square	Computed F
Year (Y)	y - 1	MS 1	MS 1/MS 2
Rep/year	y (r – 1)	MS 2	
Genotypes (G)	g - 1	MS 3	MS 3/MS 4
ΥxG	(y-1)(g-1)	MS 4	MS 4/EMS
Pooled error	y (r-1)(g-1)	EMS	
Total	yrg - 1		

Conclusion for the breeder


A cultivar that is responsive to the environment may be released for a narrowly defined area of adaptation, whereas another that has a low G x E interaction may be suitable for release for use over a wider region of production

Planning Variety Trials

- "Too little time and effort is put into the planning of experiments."
- Cochran and Cox, 1957

Varieties

- Varieties differ in yield potential, adaptation, disease/pest resistance, quality, nutrient content
- From many potential varieties we want to identify those varieties that consistently demonstrate outstanding performance and broad adaptation for traits of interest over a wide range of environments
- Environments can mean different locations, years, seasons

No Variety is the Best Everywhere

Variety A-Location 1

Variety A- Location 2

•Variety performance affected by temperatures, rainfall patterns, soil types, dominant diseases and insects, crop management in different environments

Objective of Variety Trials

- Methodical and unbiased comparison of varieties versus farmer-preferred varieties (checks) in target environments
- Proper choice of experimental design, checks, protocols is critical
- Basis for science-based recommendations

Define Target Environment

- Agroecology
 - Humid lowland tropics, Semi-arid tropics, Cool highlands
 - Red versus black soil
- Open field versus protected cultivation
- Season: dry, wet, 'regular' versus 'off-season'

Protected cultivation

Open-field, low input

Define Target Farmer Group

- Market gardeners, commercial growers, processors
- Access to labor and credit, willingness/ability to buy inputs (fertilizer, pesticides, irrigation, seed), access to markets

Trial Sites

- Trial sites should be representative of the target environment (major soil types, altitudes, seasons, temperatures)
- Plan trial sowing and transplanting dates appropriately for target season

Protected cultivation

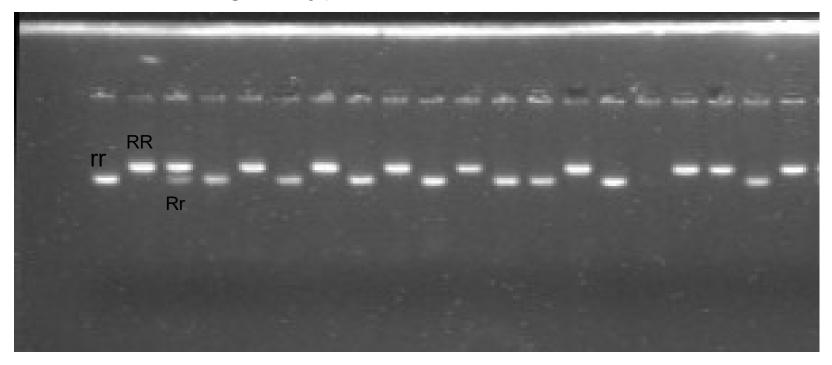
Open field

Conducting the Trial

- Choose trial sites representative of the target environment
- A uniform field is preferred for the trial soil fertility, soil texture, water-holding capacity, slope
- If field is not uniform, identify sources of variation and choose an experimental design that can help reduce "noise" from the variation
- Use the simplest possible statistical design with replication and randomization
- Consult with statistician BEFORE the experiment about plot sizes, arrangement of blocking, sample sizes

Crop Management

- Rule of thumb is to use practices of local progressive farmers
 - Fertilizer types, amounts, timing of application
 - Irrigated or rain-fed
 - Trellising
 - Disease, insect control methods

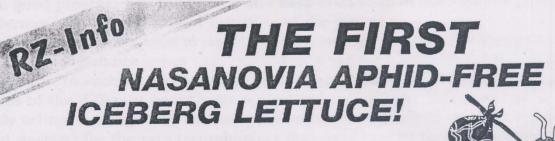

- Major issues of vegetable breeding
 - 1. Productivity
 - 2. Shelf life
 - 3. Quality traits
 - 4. Disease and pest resistance
 - 5. Wide adaptations
 - 6. Tolerance to abiotic stresses

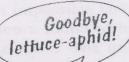
Molecular marker

genotype visualization

By migrating DNA in an electric field,we can now 'see' genotypes

Molecular breeding – classical example





This is good news, not just for true vegetarians but for all consumers, as the annoying aphid problem in iceberg lettuce has been solved once and for all.

RIJK ZWAAN is the first seed breeding company in the world to have succeeded in crossbreeding resistance to the green lettuce-aphid into iceberg lettuce varieties (NAS-resistant).

WORLD-FIRST

ICEBERG LETTUCE FORTUNAS RZ

Principles of vegetable seed production

Seed?

Reasons for the deterioration of variety

- 1. Developmental variations
- 2. Mechanical mixtures
- 3. Mutations
- 4. Natural crossing
- 5. Minor genetic variation
- 6. Selective influence of diseases
- 7. Technique of the breeder

Maintenance of genetic purity of seed

- 1. Control of seed source
 - i. Breeder's seed
 - ii. Foundation seed
 - iii Registered seed
 - iv Certified seed
- 2. Crop rotation
- 3. Isolation
 - i. Isolation by time
 - ii. Isolation by distance

Maintenance of genetic purity – contd.

- 3. Roguing of seed crop
 - i. Vegetative stage
 - ii. Flowering stage
 - iii. Maturity stage
- 4. Seed certification
- 5. Grow-out tests

Minimum isolation distance requirements for vegetable seed crop

Vegetable	Isolation distance (m)		Vegetable	Isolation distance (m)		
	BS/FS	CS		BS/FS	CS	
French bean	10	5	Peppers	400	200	
Cow pea	10	5	Okra	400	200	
Garden pea	10	5	Brinjal	200	100	
Lettuce	50	25	Tomato	50	25	
Cole crops, Chinese cabbage	1600	1000	Spinach	1600	1000	
Carrot	1000	800	Potato	5	5	
Radish/Turnip	1600	1000	Garlic	5	5	
Onion	1000	500				
Cucurbits	1000	500				

Agronomic principles for seed production

- 1. Selection of suitable areas for seed production
- 2. Selection of variety
- 3. Source of seed
- 4. Seed treatment
- 5. Better agronomic management
- 6. Supplementary pollination
- 7. Harvesting, drying & storage

Labels for various seed classes

Breeder Seed

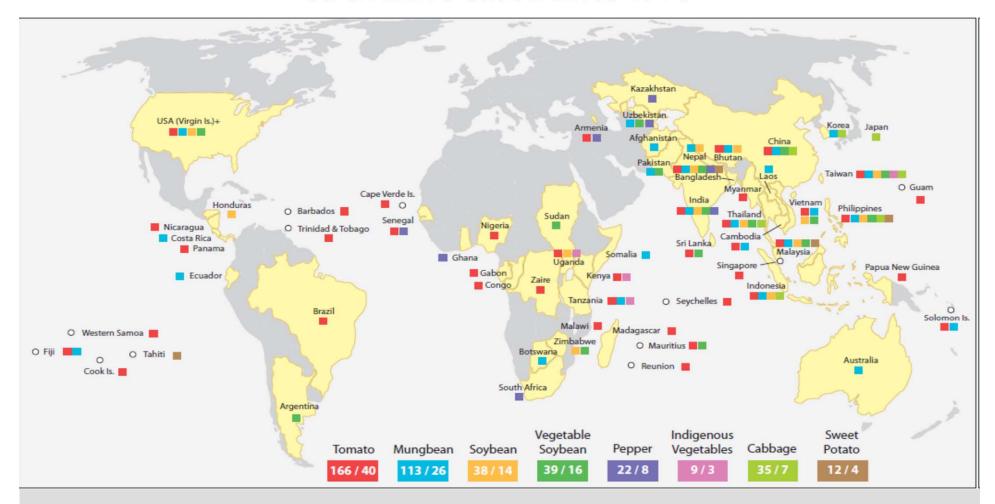
Foundation Seed

Certified Seed

AVRDC's genebank

61,494 accessions from

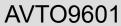
439 species


172 genera

155 countries

Cultivars released since 1978

434 improved vegetable varieties benefit farmers around the world



Current fresh market tomato releases of AVRDC

AVTO9601

AVTO9803

AVTO1001

AVTO1002

AVTO1130

Current high beta carotene tomato lines of AVRDC

AVTO1017

AVTO1016

AVTO1015

AVTO1020

AVTO1019

AVTO0102

Current hot pepper releases of AVRDC

AVPP0506

AVPP9813

AVPP0105

AVPP0206

AVPP0514

Current sweet pepper releases of AVRDC

AVPP0402

AVPP9807

AVPP0408

AVPP0701

Soybean releases of AVRDC

AVSB0301

VI060637

VI060636

AVSB0805

AVSB0803

AVSB0304

Mungbean breeding program of AVRDC

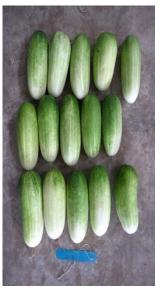
Cucurbit breeding activities at ESEA Thailand

Thailand

World annual production of cucurbits

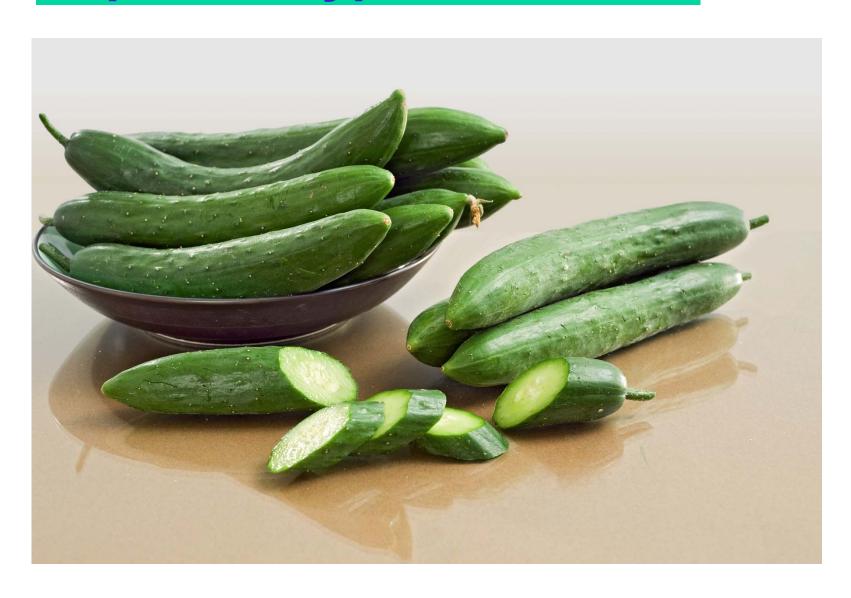
Vegetable		production per annum (million)			
	Tonnes	Hectares			
Watermelon	105.37	3.472			
Cucumbers, Gherkins	65.13	2.109			
Melon, cantaloupe	31.92	1.339			
Pumpkins, squash, gourds	24.61	1.778			
Total cucurbits	227.03	8.698			
Tomatoes	161.79	4.803			
Chilies, peppers, green	31.17	1.914			

Source: FAOSTAT 2012


Cucum	ber	PYT	Fruit					Disease reaction	
Genotype	Sex	Bitterness	Туре	Length (cm)	Width (cm)	No/plant	M. Yield (t/ha)	PM	DM
12TWFC2	G	0	BISG	11.4 ^{bcd}	3.7	8.9 ^{bc}	29.1 ^{b-e}	0	4
12TWFC3	G/P	0	BISG	11.3 ^{bcd}	3.9	7.1 ^{bcd}	22.4 ^{de}	0	5
12TWFC7	Р	0	BISW	12.1 ^{abc}	4.4	11.4 ^b	38.6a-d	0	3
12TWFC32	G	0	BISL	9.2 ^d	3.5	11.2 ^{bc}	33.2 ^{a-e}	3	3.5
12TWFC33	G	0	BISL	9.1 ^d	3.7	12.8 ^b	37.3 ^{a-d}	3	2.5

G: 100%, G/P: 85%, P: 60-80%, M: <20%

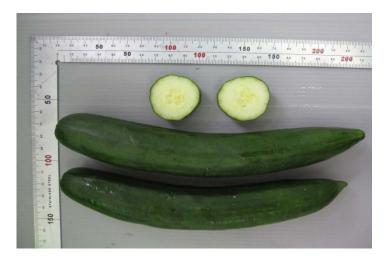
12TWFC2


12TWFC3

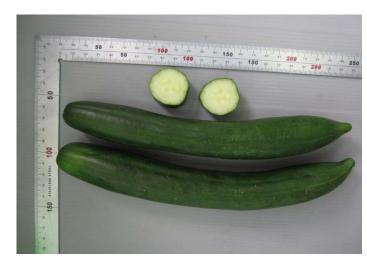
12TWFC7


12TWFC32

12TWFC33


Japanese type cucumber

Elite lines of C. sativus


13TWFC11

13TWFC13

13TWFC15

13TWFC17

Preliminary yield trial of cucumber Japanese type

Variety	Sex	Days to 1 st pistiallate flowering	Node number of 1 st pistiallate flowering	Fruit Length (cm)	Fruit Width (mm)	Fruit Weight (g)	Fruit No./ plant	Yield (t/ha)	Gumy stem blight
13TWFC15	Р	40	6	19.9 c	35.4	151 a	16.0	54.5 a	MS
13TWFC13	Р	42	5.2	21.8 b	37.5	143 a	14.2	48.6 b	MS
13TWFC17	Р	40	6	24.7 ab	37.2	181 a	10.8	46.2 b	S
13TWFC11	Р	41	6.5	23.3 abc	38.9	157 a	12.3	45.7 b	S
Mi-Yen (hybrid CK)	G/P	40	5.5	12.6 d	37.5	133 b	14.3	46.6 b	HS
CV%		4.8	22.7	6.8	5.6	10.7	21	19.8	

Bitter gourd breeding at AVRDC

Human Trial in India

Results after 8 weeks of intervention:

- Reduction in body weight, BMI, and waist circumference (P<0.01)
- Reduced mean fasting blood glucose from 110.66 mg/dl to 99.86 mg/dl (P<0.01)
- **Reduced HbA1C levels** from 6.37 % to 5.53 % (p<0.01)
- Increased insulin level from 9.5 to 10.57μU/dl in those treated with bitter gourd compared to a reduction of 0.33 μU/dl in the placebo treatment
- Reduced triglyceride (P<0.05), total cholesterol (p<0.01) and LDL cholesterol (p<0.01)
- No change in blood pressure

Bitter gourd statistics and importance

- Nearly 340, 000 ha are devoted to bitter gourd cultivation annually in Asia
- Fruit often used in folk medicine to treat type 2 diabetes
- 60% production area is under OPV in India,
 Bangladesh, Sri Lanka
- Hybrids yield 20-30 t/ha whereas OPVs yield 8-10 t/ha

Hypothesis

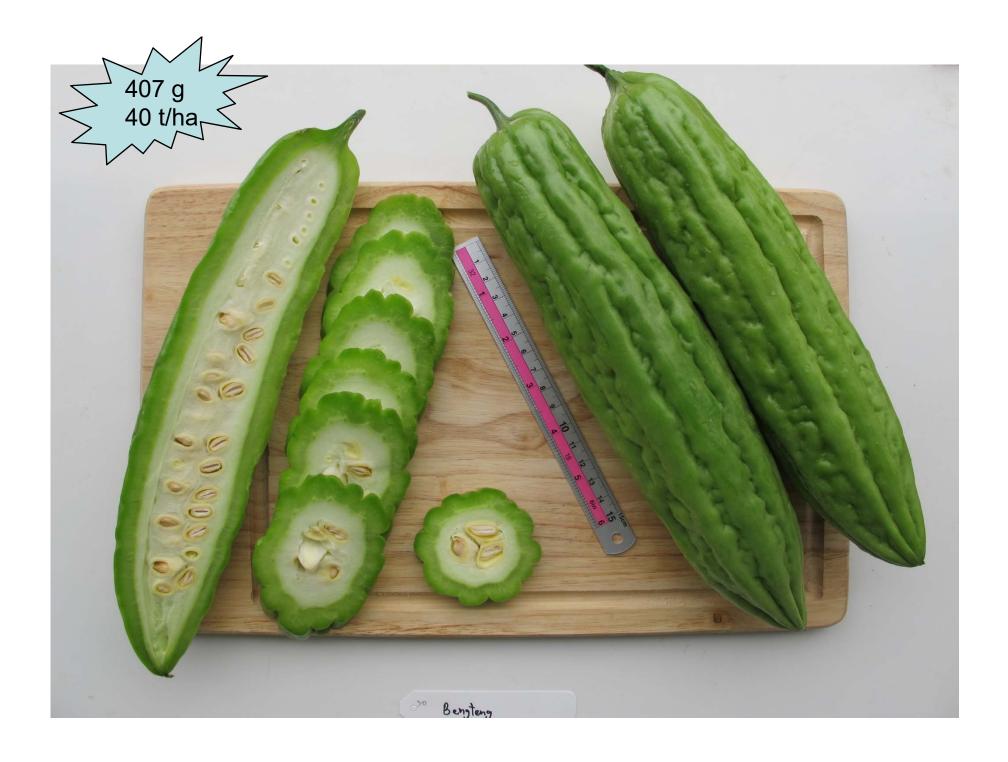
OP lines comparable to hybrids

in yield, earliness and fruit quality

Answer: Yes

Evidence?

Bitter gourd breeding block – Aerial view



AVRDC Seed Shop

Bitter Gourd

Momordica charantia L.

Lines developed at AVRDC - The World Vegetable Center

AVBG1301

Pedigree: 12THBG1-03A6-13

Parentage: Vivek

Adaptation: Hot dry and hot-wet open field

Remarks: Vines vigorous, fruit medium size and green, spindle and spiny

To order seed, please email:

seedrequest@worldveg.org

A handling fee will be charged.

For seed distribution policies, please visit the

AVRDC website: www.avrdc.org

AVRDC - The World Vegetable Center

Box 42

Shanhua, Tainan 74199

TAIWAN

Descri	ptors
Bitterness#	M
Fruit color##	MG
Fruit surface	Spiny
Fruit shape	Spindle

[#]S=strong, M=medium, L=low

^{##}G=green, LG=light green, MG=medium green, DG=dark

Mean quantitative data*						
Number of 1st female flower node	25					
Days after flowering to harvesting	14					
Number of fruit/plant	45					
Fruit length (cm)	18.8					
Fruit width (cm)	4.6					
Fruit weight (g)	125					
Yield (t/ha)	35					
Maturity (DAS)**	59					
Shelf life (day)***	2.3					

^{*}Average quantitative data were measured in August 2013 at AVRDC, East and Southeast Asia, Kamphaeng Saen, Thailand

^{##}DAS: days after sowing to commercial harvest stage

^{***} Shelf life: days before the fruit becomes soft under the shade in the field conditions (day/night= 32-34/26-28 °C, RH=80-85%)

AVRDC Seed Shop

Bitter Gourd

Momordica charantia L.

Lines developed at AVRDC - The World Vegetable Center

AVBG1313

Pedigree: 12THBG4-10A6-19 Parentage: Benteng 545

Adaptation: Hot dry and hot-wet open field

Remarks: Medium fruit size, cylindrical and light green, blunt blossom end

and high yielding

To order seed, please email:

seedrequest@worldveg.org

A handling fee will be charged.

For seed distribution policies, please visit the

AVRDC website: www.avrdc.org

AVRDC - The World Vegetable Center

Box 42

Shanhua, Tainan 74199

TAIWAN

Descr	iptors
Bitterness#	Ĺ
Fruit color##	LG
Fruit surface	Ribbed
Fruit shape	Cylindrical

[#]S=strong, M=medium, L=low

^{##}G=green, LG=light green, MG=medium green, DG=dark green

Mean quantitative data*						
Number of 1st female flower node	24					
Days after flowering to harvesting	13					
Number of fruit/plant	19					
Fruit length (cm)	20.5					
Fruit width (cm)	5,6					
Fruit weight (g)	375					
Yield (t/ha)	41.3					
Maturity (DAS)**	59					
Shelf life (day)***	2.1					

^{*}Average quantitative data were measured in August 2013 at AVRDC, East and Southeast Asia, Kamphaeng Saen, Thailand

^{***}DAS: days after sowing to commercial harvest stage

^{***} Shelf life: days before the fruit becomes soft under the shade in the field conditions (day/night= 32-34/26-28 °C, RH=80-85%)

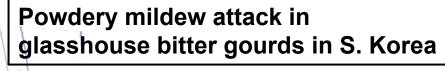
Powdery mildew resistance evaluation in bitter gourd

Looking for potential sources for resistance to powdery mildew (*Podosphaera xanthii*) in genebank accessions of bitter gourd and subsequent fixing through Inbreeding and testing against various races

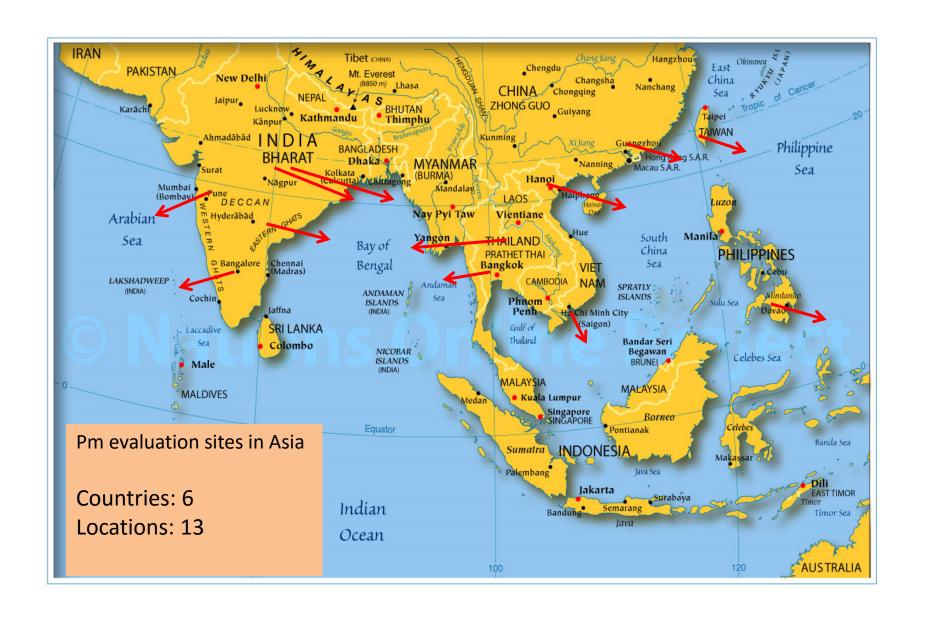
Powdery mildew infection in bitter gourd field in China

Photo: Fu Jiqin, Enza Zaden

"The Chinese growers will spray a lot to control the powdery mildew in bitter gourd fields, every 3 or 4 days. In the normal time, its every 7 days. The cost is about 75 RMB – 300 RMB (USD 12-50) for one hectare for one spray"


Fu Jiqin, Enza Zaden

"Farmers in Chhattisgarh have to spray fungicide against powdery mildew which is a costly affair as they have to spend 7 to 10% of the total outflow of the crop in fungicides only which interms of INR is costing them 10,000 to 30,000 (USD 160 – 480) per ha depending on the management practices and duration of the crop"


Vimal Chawda, VNR Seeds

Disease rating of seven bitter gourd lines to local isolates of *P. xanthii* at 12 locations in 6 countries

Country	Location	Bitter gourd breeding line						
		THMC 113	THMC 143	THMC 144	THMC 153	THMC 167	THMC 170	THMC 177
Thailand	Kamphaeng Saen	R	R	S	R	R	S	R
	Chiang Mai	R	R	S	R	R	R	R
Vietnam	Hanoi	R	R	S	R	R	R	S
	Ho Chi Minh City	R	R	S	R	R	R	R
Taiwan	Shanhua	S	R	S	R	R	S	R
Philippines	Bukidnon	R	R	S	R	R	R	S
India	Bangalore	R	R	S	R	R	R	S
	Pune	R	R	S	R	R	S	S
	Hyderabad	R	R	S	R	R	R	R
	Raipur	S	R	S	R	R	S	R
	Jagdalpur	S	R	S	R	R	R	S
China	Guangzhou	R	S	S	R	S	R	R

Bitter gourd open field day

Cucurbits claim the crown

Outstanding results from global bitter gourd and pumpkin breeding programs

Pumpkin breeding

Statistics: Pumpkin, squash, gourd

Continent	Area (ha)	Production (t/ha)	Average yield (t/ha)	Remarks
Africa	268,889	1,939255	7.2	Poor fruit quality, virus susceptibility, nutritionally poor
Asia	1,158942	15,951786	13.7	Poor fruit quality, virus susceptibility, nutritionally poor
N. America	42,144	903,285	21.4	
World	1,774554	24,256767	13.6	

Source: FAOSTAT 2014

Pumpkin virus resistance breeding in AVRDC

Farmer's pumpkin field in Cagayan de oro (Philippines)

Pumpkin virus survey in Kamphaeng Saen in 2013

Sample	G V	P R S V W	P O T Y	C M V	T S W V	W S M O V	Z Y M V	C G M V	W M V 2	M Y S V	W S M o V N S s	P e P M o V
C. moshata	+	-	+	-	-	-	-		-	-		
C. moschata	+	-	+	-	-	_	-		-	_		
C. moschata	+	-	-	-	-	-	-		-	_		
C. moschata	+	+	+	-	-	-	-		-	-		
C. moschata	-	+	+	-	-	-	-		-	-		
C. moschata	+	+	+	-	-	-	-		-	-		
C. moschata	+	+	+	-	-	-	+		-			

Field design for multiple virus resistance evaluation

S	S	S	S	S	S	S
S	R	S	R	S	R	S
S	R	S	R	S	R	S
S	S	S	S	S	S	S
S	R	S	R	S	R	S
S	R	S	R	S	R	S
S	S	S	S	S	S	S

Field screening of pumpkin breeding lines for multiple virus resistance

Field screening of pumpkin breeding lines for multiple virus resistance

Conclusion

- Our best pumpkin lines are not immune to Begomoviruses, but instead they show good tolerance to these viruses, with symptoms developing in the young tips of older plants and plants provide optimum productivity
- We need to test these lines with CMV,
 ZYMV and PRSV isolates of Thailand through artificial inoculation

Artificial inoculation with potyviruses

Artificial inoculation

THMC 122-1-6-8-7-5							
Virus	Total plants	R	S				
CMV	30	30	0				
PRSV	30	29	1				
ZYMV	30	25	5				
THMC 120-1-3-2-9-7							
CMV	30	30	0				
PRSV	30	29	1				
ZYMV	30	26	4				
Sus Check	30	0	30				

Screening pumpkin lines against SqLCV

Screening pumpkin lines against SqLCV

Screening pumpkin lines against SqLCV

Board of Directors & AVRDC staff in pumpkin breeding block

Board of Directors & AVRDC staff in pumpkin breeding block

Visitor from Rasi Seeds

2013

Visitors from Chia Tai Seeds

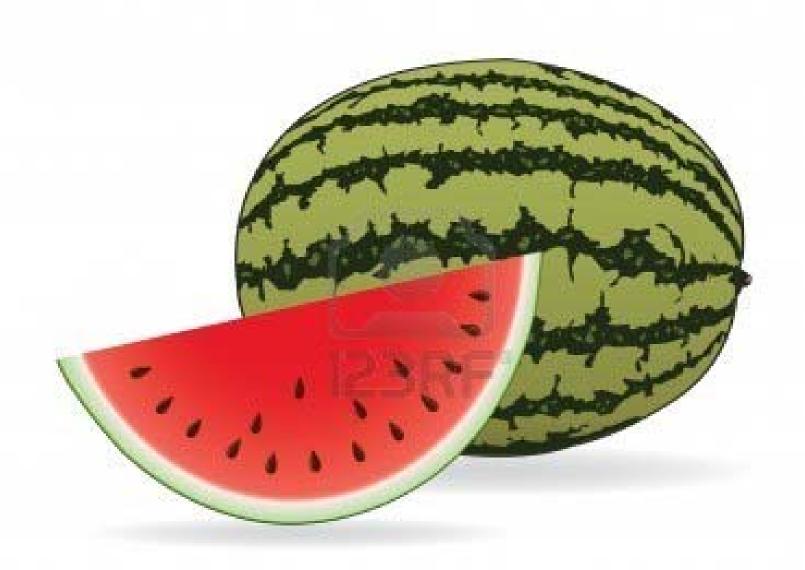
Visitors from East-West Seed

Visitor from Real Seeds

Lemon melon

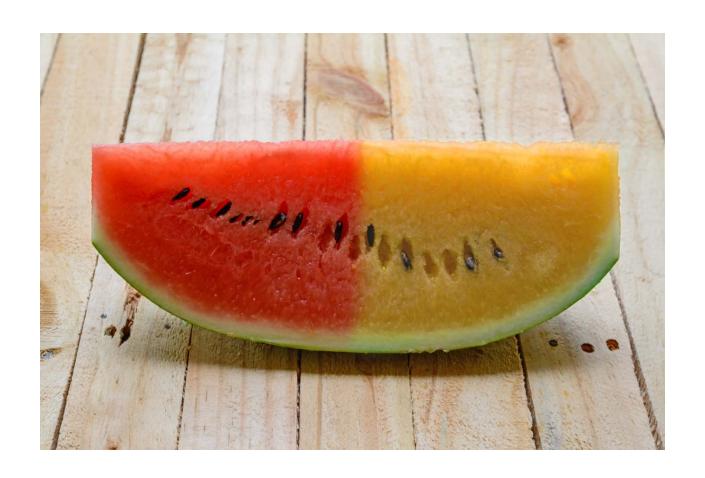
700/800 mg of citric acid/100 g of fruit flesh

pH 4.5 compared with 6.5 for a standard melon



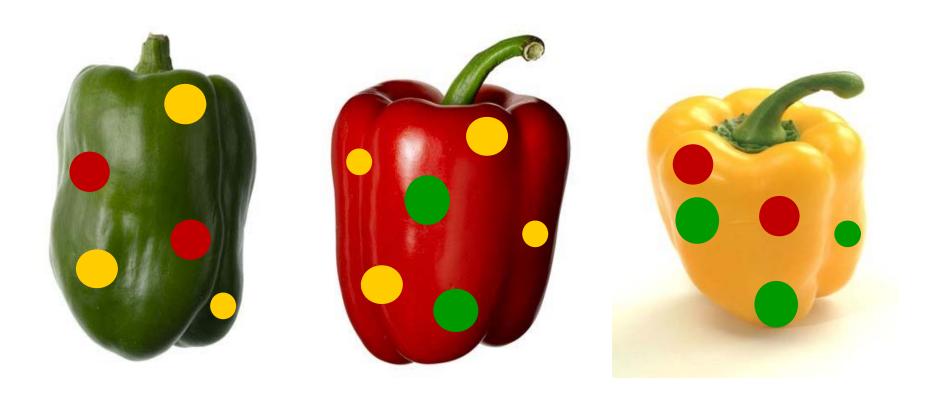
Cosmetic breeding !!!


Future melons - Cosmetic breeding!



Future Watermelons – Cosmetic breeding!

Future cabbages!


Future cabbages!

Future Sweet peppers – Cosmetic breeding!

B R E D I N G

Cucurbit Crew in Thailand

Have a good day!

